Keywords: quadratic differential, tau function, Jenkins–Strebel differential, ribbon graph.
@article{TMF_2018_197_2_a0,
author = {M. Bertola and D. A. Korotkin},
title = {Discriminant circle bundles over local models of {Strebel} graphs and},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--207},
year = {2018},
volume = {197},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a0/}
}
M. Bertola; D. A. Korotkin. Discriminant circle bundles over local models of Strebel graphs and. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 163-207. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a0/
[1] J. Jenkins, “On the existence of certain general extremal metrics”, Ann. of Math. (2), 66:3 (1957), 440–453 | DOI | MR
[2] K. Strebel, Quadratic Differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete, 5, Springer, Berlin, 1984 | DOI | MR
[3] J. Harer, “The cohomology of the moduli space of curves”, Theory of Moduli (Montecatini Terme, Italy, June 21–29, 1985), Lecture Notes in Mathematics, 1337, ed. E. Sernesi, Springer, Berlin, 1988, 138–221 | DOI | MR
[4] J. L. Harer, “The virtual cohomological dimension of the mapping class group of an orientable surface”, Invent. Math., 84:1 (1986), 157–176 | DOI | MR
[5] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Commun. Math. Phys., 147:1 (1992), 1–23 | DOI | MR
[6] M. Kontsevich, “Feynman diagrams and low-dimensional topology”, First European Congress of Mathematics (Paris, July 6–10, 1992), v. II, Progress in Mathematics, 120, Invited Lectures (Part 2), eds. A. Joseph, F. Mignot, F. Murat, B. Prum, R. Rentschler, Birkhaüser, Basel, 1994, 97–121 | DOI | MR
[7] E. Witten, “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Differential Geometry (Harvard University, Cambridge, MA, USA, April 27–29, 1990), Supplement to the Journal of Differential Geometry, 1, eds. C. C. Hsiung, S. T. Yau, H. Lawson, H. Blaine, Jr., AMS, Providence, RI, 1991, 243–310 | DOI | MR
[8] K. Igusa, “Graph cohomology and Kontsevich cycles”, Topology, 43:6 (2004), 1469–1510 | DOI | MR
[9] K. Igusa, “Combinatorial Miller–Morita–Mumford classes and Witten cycles”, Algebr. Geom. Topol., 4:1 (2004), 473–520 | DOI | MR
[10] G. Mondello, “Riemann surfaces, ribbon graphs and combinatorial classes”, Handbook of Teichmüller theory, v. II, IRMA Lectures in Mathematics and Theoretical Physics, 13, ed. A. Papadopoulos, European Math. Soc. Publ. House, Zürich, 2009, 151–215 | DOI | MR
[11] G. Mondello, “Combinatorial classes on $\overline{\mathcal M}_{g,n}$ are tautological”, Int. Math. Res. Notices, 2004:44 (2004), 2329–2390 | DOI | MR
[12] R. Penner, “The simplicial compactification of Riemann's moduli space”, Topology and Teichmüller spaces (Katinkulta, Finland, 24–28 July, 1995), eds. S. Kojima, Y. Matsumoto, K. Saito, M. Seppälä, World Sci., Singapore, 1996, 237–252 | DOI | MR
[13] E. Arbarello, M. Cornalba, “Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves”, J. Algebraic Geom., 5:4 (1996), 705–749 | MR
[14] D. Zvonkine, Strebel differentials on stable curves and Kontsevich's proof of Witten's conjecture, arXiv: math/0209071
[15] D. Korotkin, “Solution of matrix Riemann–Hilbert problems with quasi-permutation monodromy matrices”, Math. Ann., 329:2 (2004), 335–364 | DOI | MR
[16] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, Heidelberg, 1996, 120–348 | DOI | MR
[17] A. Kokotov, D. Korotkin, “Tau-functions on spaces of Abelian differentials and higher genus generalization of Ray–Singer formula”, J. Differ. Geom., 82:1 (2009), 35–100 | DOI | MR
[18] A. Kokotov, D. Korotkin, “Tau-functions on spaces of Abelian and quadratic differentials and determinants of Laplacians in Strebel metrics of finite volume”, Preprint No. 46, Max-Planck Institute for Mathematics in Science, Leipzig, 2004, arXiv: math/0405042
[19] A. Kokotov, D. Korotkin, P. Zograf, “Isomonodromic tau function on the space of admissible covers”, Adv. Math., 227:1 (2011), 586–600 | DOI | MR
[20] D. Korotkin, P. Zograf, “Tau function and moduli of differentials”, Math. Res. Lett., 18:3 (2011), 447–458 | DOI | MR
[21] D. Korotkin, P. Zograf, “Tau-function and Prym class”, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemporary Mathematics, 593, eds. A. Dzhamay, K. Maruno, V. U. Pierce, AMS, Providence, RI, 2013, 241–261 | DOI | MR
[22] M. Bertola, D. Korotkin, “Hodge and Prym tau-functions, Jenkins–Strebel differentials and combinatorial model of $\mathcal M_{g,n}$”, arXiv: 1804.02495
[23] S.-Y. Lee, R. Teodorescu, P. Wiegman, “Shocks and finite-time singularities in Hele–Shaw flow”, Physica D, 238:14 (2009), 1113–1128 | DOI | MR
[24] I. M. Krichever, “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Commun. Pure Appl. Math., 47:4 (1994), 437–475 | DOI | MR
[25] M. Bertola, “Boutroux curves with external field: equilibrium measures without a variational problem”, Anal. Math. Phys., 1:2–3 (2011), 167–211 | DOI | MR
[26] P. Boutroux, “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre”, Ann. Sci. École Norm. Sup. Ser. 3, 30 (1913), 255–375 ; “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre (suite)”, 31 (1914), 99–159 | DOI | MR | DOI | MR
[27] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé Transcendents: The Riemann–Hilbert Approach, Mathematical Surveys and Monographs, 128, AMS, Providence, RI, 2006 | DOI | MR