Discriminant circle bundles over local models of Strebel graphs and
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 163-207
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study special "discriminant" circle bundles over two elementary moduli spaces of meromorphic quadratic differentials with real periods denoted by $\mathcal Q_0^{\mathbb{R}}(-7)$ and$\mathcal Q^{\mathbb{R}}_0([-3]^2)$. The space $\mathcal Q_0^{\mathbb{R}}(-7)$ is the moduli space of meromorphic quadratic differentials on the Riemann sphere with one pole of order seven with real periods; it appears naturally in the study of a neighborhood of the Witten cycle $W_5$ in the combinatorial model based on Jenkins–Strebel quadratic differentials of $\mathcal M_{g,n}$. The space $\mathcal Q^{\mathbb{R}}_0([-3]^2)$ is the moduli space of meromorphic quadratic differentials on the Riemann sphere with two poles of order at most three with real periods; it appears in the description of a neighborhood of Kontsevich's boundary $W_{1,1}$ of the combinatorial model. Applying the formalism of the Bergman tau function to the combinatorial model (with the goal of analytically computing cycles Poincaré dual to certain combinations of tautological classes) requires studying special sections of circle bundles over $\mathcal Q_0^{\mathbb{R}}(-7)$ and $\mathcal Q^{\mathbb{R}}_0([-3]^2)$. In the $\mathcal Q_0^{\mathbb{R}}(-7)$ case, a section of this circle bundle is given by the argument of the modular discriminant. We study the spaces $\mathcal Q_0^{\mathbb{R}}(-7)$ and $\mathcal Q^{\mathbb{R}}_0([-3]^2)$, also called the spaces of Boutroux curves, in detail together with the corresponding circle bundles.
Mots-clés : moduli space, Boutroux curve
Keywords: quadratic differential, tau function, Jenkins–Strebel differential, ribbon graph.
@article{TMF_2018_197_2_a0,
     author = {M. Bertola and D. A. Korotkin},
     title = {Discriminant circle bundles over local models of {Strebel} graphs and},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--207},
     year = {2018},
     volume = {197},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a0/}
}
TY  - JOUR
AU  - M. Bertola
AU  - D. A. Korotkin
TI  - Discriminant circle bundles over local models of Strebel graphs and
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 163
EP  - 207
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a0/
LA  - ru
ID  - TMF_2018_197_2_a0
ER  - 
%0 Journal Article
%A M. Bertola
%A D. A. Korotkin
%T Discriminant circle bundles over local models of Strebel graphs and
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 163-207
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a0/
%G ru
%F TMF_2018_197_2_a0
M. Bertola; D. A. Korotkin. Discriminant circle bundles over local models of Strebel graphs and. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 163-207. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a0/

[1] J. Jenkins, “On the existence of certain general extremal metrics”, Ann. of Math. (2), 66:3 (1957), 440–453 | DOI | MR

[2] K. Strebel, Quadratic Differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete, 5, Springer, Berlin, 1984 | DOI | MR

[3] J. Harer, “The cohomology of the moduli space of curves”, Theory of Moduli (Montecatini Terme, Italy, June 21–29, 1985), Lecture Notes in Mathematics, 1337, ed. E. Sernesi, Springer, Berlin, 1988, 138–221 | DOI | MR

[4] J. L. Harer, “The virtual cohomological dimension of the mapping class group of an orientable surface”, Invent. Math., 84:1 (1986), 157–176 | DOI | MR

[5] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Commun. Math. Phys., 147:1 (1992), 1–23 | DOI | MR

[6] M. Kontsevich, “Feynman diagrams and low-dimensional topology”, First European Congress of Mathematics (Paris, July 6–10, 1992), v. II, Progress in Mathematics, 120, Invited Lectures (Part 2), eds. A. Joseph, F. Mignot, F. Murat, B. Prum, R. Rentschler, Birkhaüser, Basel, 1994, 97–121 | DOI | MR

[7] E. Witten, “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Differential Geometry (Harvard University, Cambridge, MA, USA, April 27–29, 1990), Supplement to the Journal of Differential Geometry, 1, eds. C. C. Hsiung, S. T. Yau, H. Lawson, H. Blaine, Jr., AMS, Providence, RI, 1991, 243–310 | DOI | MR

[8] K. Igusa, “Graph cohomology and Kontsevich cycles”, Topology, 43:6 (2004), 1469–1510 | DOI | MR

[9] K. Igusa, “Combinatorial Miller–Morita–Mumford classes and Witten cycles”, Algebr. Geom. Topol., 4:1 (2004), 473–520 | DOI | MR

[10] G. Mondello, “Riemann surfaces, ribbon graphs and combinatorial classes”, Handbook of Teichmüller theory, v. II, IRMA Lectures in Mathematics and Theoretical Physics, 13, ed. A. Papadopoulos, European Math. Soc. Publ. House, Zürich, 2009, 151–215 | DOI | MR

[11] G. Mondello, “Combinatorial classes on $\overline{\mathcal M}_{g,n}$ are tautological”, Int. Math. Res. Notices, 2004:44 (2004), 2329–2390 | DOI | MR

[12] R. Penner, “The simplicial compactification of Riemann's moduli space”, Topology and Teichmüller spaces (Katinkulta, Finland, 24–28 July, 1995), eds. S. Kojima, Y. Matsumoto, K. Saito, M. Seppälä, World Sci., Singapore, 1996, 237–252 | DOI | MR

[13] E. Arbarello, M. Cornalba, “Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves”, J. Algebraic Geom., 5:4 (1996), 705–749 | MR

[14] D. Zvonkine, Strebel differentials on stable curves and Kontsevich's proof of Witten's conjecture, arXiv: math/0209071

[15] D. Korotkin, “Solution of matrix Riemann–Hilbert problems with quasi-permutation monodromy matrices”, Math. Ann., 329:2 (2004), 335–364 | DOI | MR

[16] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, Heidelberg, 1996, 120–348 | DOI | MR

[17] A. Kokotov, D. Korotkin, “Tau-functions on spaces of Abelian differentials and higher genus generalization of Ray–Singer formula”, J. Differ. Geom., 82:1 (2009), 35–100 | DOI | MR

[18] A. Kokotov, D. Korotkin, “Tau-functions on spaces of Abelian and quadratic differentials and determinants of Laplacians in Strebel metrics of finite volume”, Preprint No. 46, Max-Planck Institute for Mathematics in Science, Leipzig, 2004, arXiv: math/0405042

[19] A. Kokotov, D. Korotkin, P. Zograf, “Isomonodromic tau function on the space of admissible covers”, Adv. Math., 227:1 (2011), 586–600 | DOI | MR

[20] D. Korotkin, P. Zograf, “Tau function and moduli of differentials”, Math. Res. Lett., 18:3 (2011), 447–458 | DOI | MR

[21] D. Korotkin, P. Zograf, “Tau-function and Prym class”, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemporary Mathematics, 593, eds. A. Dzhamay, K. Maruno, V. U. Pierce, AMS, Providence, RI, 2013, 241–261 | DOI | MR

[22] M. Bertola, D. Korotkin, “Hodge and Prym tau-functions, Jenkins–Strebel differentials and combinatorial model of $\mathcal M_{g,n}$”, arXiv: 1804.02495

[23] S.-Y. Lee, R. Teodorescu, P. Wiegman, “Shocks and finite-time singularities in Hele–Shaw flow”, Physica D, 238:14 (2009), 1113–1128 | DOI | MR

[24] I. M. Krichever, “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Commun. Pure Appl. Math., 47:4 (1994), 437–475 | DOI | MR

[25] M. Bertola, “Boutroux curves with external field: equilibrium measures without a variational problem”, Anal. Math. Phys., 1:2–3 (2011), 167–211 | DOI | MR

[26] P. Boutroux, “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre”, Ann. Sci. École Norm. Sup. Ser. 3, 30 (1913), 255–375 ; “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre (suite)”, 31 (1914), 99–159 | DOI | MR | DOI | MR

[27] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé Transcendents: The Riemann–Hilbert Approach, Mathematical Surveys and Monographs, 128, AMS, Providence, RI, 2006 | DOI | MR