Reflection and refraction of solitons by the $\text{KdV}$–Burgers equation in nonhomogeneous dissipative media
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 153-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the behavior of the soliton that encounters a barrier with dissipation while moving in a nondissipative medium. We use the Korteweg–de Vries–Burgers equation to model this situation. The modeling includes the case of a finite dissipative layer similar to a wave passing through air–glass–air and also a wave passing from a nondissipative layer into a dissipative layer (similar to light passing from air to water). The dissipation predictably reduces the soliton amplitude/velocity. Other effects also occur in the case of a finite barrier in the soliton path: after the wave leaves the dissipative barrier, it retains the soliton form, but a reflection wave arises as small and quasiharmonic oscillations (a breather). The breather propagates faster than the soliton passing through the barrier.
Keywords: KdV–Burgers equation, nonhomogeneous layered media, reflection
Mots-clés : soliton, refraction.
@article{TMF_2018_197_1_a8,
     author = {A. V. Samokhin},
     title = {Reflection and refraction of solitons by the~$\text{KdV}${{\textendash}Burgers} equation in nonhomogeneous dissipative media},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {153--160},
     year = {2018},
     volume = {197},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a8/}
}
TY  - JOUR
AU  - A. V. Samokhin
TI  - Reflection and refraction of solitons by the $\text{KdV}$–Burgers equation in nonhomogeneous dissipative media
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 153
EP  - 160
VL  - 197
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a8/
LA  - ru
ID  - TMF_2018_197_1_a8
ER  - 
%0 Journal Article
%A A. V. Samokhin
%T Reflection and refraction of solitons by the $\text{KdV}$–Burgers equation in nonhomogeneous dissipative media
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 153-160
%V 197
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a8/
%G ru
%F TMF_2018_197_1_a8
A. V. Samokhin. Reflection and refraction of solitons by the $\text{KdV}$–Burgers equation in nonhomogeneous dissipative media. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 153-160. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a8/

[1] A. Samokhin, Modelling solutions to the Kdv–Burgers equation in the case of non-homogeneous dissipative media, arXiv: 1707.03649

[2] A. Samokhin, “On nonlinear superposition of the KdV-Burgers shock waves and the behavior of solitons in a layered medium”, Differential Geom. Appl., 54, Part A (2017), 91–99 | DOI | MR

[3] R. L. Pego, P. Smereka, M. I. Weinstein, “Oscillatory instability of traveling waves for a KdV–Burgers equation”, Phys. D., 67:1–3 (1993), 45–65 | DOI | MR

[4] A. P. Chugainova, V. A. Shargatov, “Ustoichivost nestatsionarnykh reshenii obobschennogo uravneniya Kortvega–de Friza–Byurgersa”, Zhurn. vychisl. matem. i matem. fiz., 55:2 (2015), 253–266 | DOI | DOI | MR