Subsymmetries and their properties
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 138-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a subsymmetry of a differential system as an infinitesimal transformation of a subset of the system that leaves the subset invariant on the solution set of the entire system. We discuss the geometric meaning and properties of subsymmetries and also an algorithm for finding subsymmetries of a system. We show that a subsymmetry is a significantly more powerful tool than a regular symmetry with regard to deformation of conservation laws. We demonstrate that all lower conservation laws of the nonlinear telegraph system can be generated by system subsymmetries.
Keywords: symmetry, symmetry extension, differential system, invariance property.
@article{TMF_2018_197_1_a7,
     author = {V. Rosenhaus and R. Shankar},
     title = {Subsymmetries and their properties},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {138--152},
     year = {2018},
     volume = {197},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a7/}
}
TY  - JOUR
AU  - V. Rosenhaus
AU  - R. Shankar
TI  - Subsymmetries and their properties
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 138
EP  - 152
VL  - 197
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a7/
LA  - ru
ID  - TMF_2018_197_1_a7
ER  - 
%0 Journal Article
%A V. Rosenhaus
%A R. Shankar
%T Subsymmetries and their properties
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 138-152
%V 197
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a7/
%G ru
%F TMF_2018_197_1_a7
V. Rosenhaus; R. Shankar. Subsymmetries and their properties. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 138-152. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a7/

[1] P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107, Springer, New York, 2000 | DOI | MR | Zbl

[2] G. W. Bluman, A. Cheviakov, S. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168, Springer, New York, 2010 | DOI | MR

[3] V. Rosenhaus, R. Shankar, “Sub-symmetries and the decoupling of differential systems”, to be submitted for publication

[4] G. W. Bluman, J. D. Cole, “The general similarity solution of the heat equation”, J. Math. Mech., 18:11 (1969), 1025–1042 | MR | Zbl

[5] V. I. Fuschich, “Uslovnaya simmetriya uravnenii nelineinoi matematicheskoi fiziki”, Ukr. matem. zhurn., 43:11 (1991), 1456–1470 | DOI

[6] P. J. Olver, P. Rosenau, “Group-invariant solutions of differential equations”, SIAM J. Appl. Math., 47:2 (1987), 263–278 | DOI | MR

[7] D. Levi, P. Winternitz, “Nonclassical symmetry reduction: example of the Boussinesq equation”, J. Phys. A, 22:15 (1989), 2915–2924 | DOI | MR

[8] P. J. Olver, E. M. Vorob'ev, “Nonclassical and conditional symmetries”, Lie Group Analysis of Differential Equations, v. 3, New Trends in Theoretical Developments and Computational Methods, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 1994, 291–328

[9] G. Cicogna, G. Gaeta, “Partial Lie-point symmetries of differential equations”, J. Phys. A: Math. Gen., 34:3 (2001), 491–512 | DOI

[10] V. Rozenkhaus, “O beskonechnom mnozhestve zakonov sokhraneniya dlya beskonechnomernykh simmetrii”, TMF, 151:3 (2007), 518–528 | DOI | DOI | MR | Zbl

[11] V. Rosenhaus, R. Shankar, “Second Noether theorem for quasi-Noether systems”, J. Phys. A: Math. Gen., 49:17 (2016), 175205, 22 pp. | DOI | MR

[12] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl

[13] G. W. Bluman, Temuerchaolu, “Comparing symmetries and conservation laws of nonlinear telegraph equations”, J. Math. Phys., 46:7 (2005), 073513, 14 pp. | DOI | MR

[14] G. W. Bluman, “Conservation laws for nonlinear telegraph equations”, J. Math. Anal. Appl., 310:2 (2005), 459-476 | DOI

[15] A. Jeffrey, “Acceleration wave propagation in hyperelastic rods of variable cross-section”, Wave Motion, 4:2 (1982), 173–180 | DOI | MR