@article{TMF_2018_197_1_a7,
author = {V. Rosenhaus and R. Shankar},
title = {Subsymmetries and their properties},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {138--152},
year = {2018},
volume = {197},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a7/}
}
V. Rosenhaus; R. Shankar. Subsymmetries and their properties. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 138-152. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a7/
[1] P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107, Springer, New York, 2000 | DOI | MR | Zbl
[2] G. W. Bluman, A. Cheviakov, S. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168, Springer, New York, 2010 | DOI | MR
[3] V. Rosenhaus, R. Shankar, “Sub-symmetries and the decoupling of differential systems”, to be submitted for publication
[4] G. W. Bluman, J. D. Cole, “The general similarity solution of the heat equation”, J. Math. Mech., 18:11 (1969), 1025–1042 | MR | Zbl
[5] V. I. Fuschich, “Uslovnaya simmetriya uravnenii nelineinoi matematicheskoi fiziki”, Ukr. matem. zhurn., 43:11 (1991), 1456–1470 | DOI
[6] P. J. Olver, P. Rosenau, “Group-invariant solutions of differential equations”, SIAM J. Appl. Math., 47:2 (1987), 263–278 | DOI | MR
[7] D. Levi, P. Winternitz, “Nonclassical symmetry reduction: example of the Boussinesq equation”, J. Phys. A, 22:15 (1989), 2915–2924 | DOI | MR
[8] P. J. Olver, E. M. Vorob'ev, “Nonclassical and conditional symmetries”, Lie Group Analysis of Differential Equations, v. 3, New Trends in Theoretical Developments and Computational Methods, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 1994, 291–328
[9] G. Cicogna, G. Gaeta, “Partial Lie-point symmetries of differential equations”, J. Phys. A: Math. Gen., 34:3 (2001), 491–512 | DOI
[10] V. Rozenkhaus, “O beskonechnom mnozhestve zakonov sokhraneniya dlya beskonechnomernykh simmetrii”, TMF, 151:3 (2007), 518–528 | DOI | DOI | MR | Zbl
[11] V. Rosenhaus, R. Shankar, “Second Noether theorem for quasi-Noether systems”, J. Phys. A: Math. Gen., 49:17 (2016), 175205, 22 pp. | DOI | MR
[12] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl
[13] G. W. Bluman, Temuerchaolu, “Comparing symmetries and conservation laws of nonlinear telegraph equations”, J. Math. Phys., 46:7 (2005), 073513, 14 pp. | DOI | MR
[14] G. W. Bluman, “Conservation laws for nonlinear telegraph equations”, J. Math. Anal. Appl., 310:2 (2005), 459-476 | DOI
[15] A. Jeffrey, “Acceleration wave propagation in hyperelastic rods of variable cross-section”, Wave Motion, 4:2 (1982), 173–180 | DOI | MR