Mots-clés : Haantjes tensor.
@article{TMF_2018_197_1_a6,
author = {O. I. Mokhov and N. A. Pavlenko},
title = {Classification of the~associativity equations with a~first-order {Hamiltonian} operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {124--137},
year = {2018},
volume = {197},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a6/}
}
TY - JOUR AU - O. I. Mokhov AU - N. A. Pavlenko TI - Classification of the associativity equations with a first-order Hamiltonian operator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 124 EP - 137 VL - 197 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a6/ LA - ru ID - TMF_2018_197_1_a6 ER -
O. I. Mokhov; N. A. Pavlenko. Classification of the associativity equations with a first-order Hamiltonian operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 124-137. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a6/
[1] E. Witten, “On the structure of the topological phase of two-dimensional gravity”, Nucl. Phys. B, 340:2–3 (1990), 281–332 | DOI | MR
[2] R. Dijkgraaf, H. Verlinde, E. Verlinde, “Topological strings in $d1$”, Nucl. Phys. B, 352:1 (1991), 59–86 | DOI | MR
[3] B. A. Dubrovin, Geometry of 2D topological field theories, Preprint SISSA-89/94/FM, SISSA, Trieste, Italy, 1994 ; Integrable Systems and Quantum Groups (Montecatini Terme, Italy, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | MR | DOI
[4] O. I. Mokhov, “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in Topology and Mathematical Physics, American Mathematical Society Translations, Ser. 2, 170, ed. S. P. Novikov, AMS, Providence, RI, 1995, 121–151, arXiv: hep-th/9503076 | DOI | MR
[5] O. I. Mokhov, “Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, UMN, 53:3 (1998), 85–192 | DOI | DOI | MR | Zbl
[6] O. I. Mokhov, E. V. Ferapontov, “Uravneniya assotsiativnosti dvumernoi topologicheskoi teorii polya kak integriruemye gamiltonovy nediagonalizuemye sistemy gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 30:3 (1996), 62–72 | DOI | DOI | MR | Zbl
[7] J. Kalayci, Y. Nutku, “Bi-Hamiltonian structure of a WDVV equation in $2$-d topological field theory”, Phys. Lett. A, 227:3–4 (1997), 177–182 | DOI | MR
[8] J. Kalayci, Y. Nutku, “Alternative bi-Hamiltonian structures for WDVV equations of associativity”, J. Phys. A: Math. Gen., 31:2 (1998), 723–734, arXiv: hep-th/9810076 | DOI | MR
[9] B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[10] B. A. Dubrovin, S. P. Novikov, “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | DOI | MR | Zbl
[11] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl
[12] E. V. Ferapontov, “On integrability of $3 \times 3$ semi-Hamiltonian hydrodynamic type systems which do not possess Riemanian invariants”, Phys. D., 63:1–2 (1993), 50–70 | DOI | MR
[13] O. I. Bogoyavlenskij, A. P. Reynolds, “Criteria for existence of a Hamiltonian structure”, Regul. Chaotic Dyn., 15:4–5 (2010), 431–439 | DOI | MR
[14] E. V. Ferapontov, C. A. P. Galvão, O. I. Mokhov, Y. Nutku, “Bi-Hamiltonian structure of equations of associativity in 2D topological field theory”, Commun. Math. Phys., 186:3 (1997), 649–669 | DOI | MR
[15] A. Haantjes, “On $X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 17:2 (1955), 158–162 | DOI | MR