Classification of the associativity equations with a first-order Hamiltonian operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 124-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Hamiltonian geometry of systems of hydrodynamic type that are equivalent to the associativity equations in the case of three primary fields and obtain the complete classification of the associativity equations with respect to the existence of a first-order Dubrovin–Novikov Hamiltonian structure.
Keywords: associativity equations, nondiagonalizable system of hydrodynamic type, Dubrovin–Novikov Hamiltonian operator, flat metric
Mots-clés : Haantjes tensor.
@article{TMF_2018_197_1_a6,
     author = {O. I. Mokhov and N. A. Pavlenko},
     title = {Classification of the~associativity equations with a~first-order {Hamiltonian} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {124--137},
     year = {2018},
     volume = {197},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a6/}
}
TY  - JOUR
AU  - O. I. Mokhov
AU  - N. A. Pavlenko
TI  - Classification of the associativity equations with a first-order Hamiltonian operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 124
EP  - 137
VL  - 197
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a6/
LA  - ru
ID  - TMF_2018_197_1_a6
ER  - 
%0 Journal Article
%A O. I. Mokhov
%A N. A. Pavlenko
%T Classification of the associativity equations with a first-order Hamiltonian operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 124-137
%V 197
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a6/
%G ru
%F TMF_2018_197_1_a6
O. I. Mokhov; N. A. Pavlenko. Classification of the associativity equations with a first-order Hamiltonian operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 124-137. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a6/

[1] E. Witten, “On the structure of the topological phase of two-dimensional gravity”, Nucl. Phys. B, 340:2–3 (1990), 281–332 | DOI | MR

[2] R. Dijkgraaf, H. Verlinde, E. Verlinde, “Topological strings in $d1$”, Nucl. Phys. B, 352:1 (1991), 59–86 | DOI | MR

[3] B. A. Dubrovin, Geometry of 2D topological field theories, Preprint SISSA-89/94/FM, SISSA, Trieste, Italy, 1994 ; Integrable Systems and Quantum Groups (Montecatini Terme, Italy, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | MR | DOI

[4] O. I. Mokhov, “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in Topology and Mathematical Physics, American Mathematical Society Translations, Ser. 2, 170, ed. S. P. Novikov, AMS, Providence, RI, 1995, 121–151, arXiv: hep-th/9503076 | DOI | MR

[5] O. I. Mokhov, “Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, UMN, 53:3 (1998), 85–192 | DOI | DOI | MR | Zbl

[6] O. I. Mokhov, E. V. Ferapontov, “Uravneniya assotsiativnosti dvumernoi topologicheskoi teorii polya kak integriruemye gamiltonovy nediagonalizuemye sistemy gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 30:3 (1996), 62–72 | DOI | DOI | MR | Zbl

[7] J. Kalayci, Y. Nutku, “Bi-Hamiltonian structure of a WDVV equation in $2$-d topological field theory”, Phys. Lett. A, 227:3–4 (1997), 177–182 | DOI | MR

[8] J. Kalayci, Y. Nutku, “Alternative bi-Hamiltonian structures for WDVV equations of associativity”, J. Phys. A: Math. Gen., 31:2 (1998), 723–734, arXiv: hep-th/9810076 | DOI | MR

[9] B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[10] B. A. Dubrovin, S. P. Novikov, “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | DOI | MR | Zbl

[11] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl

[12] E. V. Ferapontov, “On integrability of $3 \times 3$ semi-Hamiltonian hydrodynamic type systems which do not possess Riemanian invariants”, Phys. D., 63:1–2 (1993), 50–70 | DOI | MR

[13] O. I. Bogoyavlenskij, A. P. Reynolds, “Criteria for existence of a Hamiltonian structure”, Regul. Chaotic Dyn., 15:4–5 (2010), 431–439 | DOI | MR

[14] E. V. Ferapontov, C. A. P. Galvão, O. I. Mokhov, Y. Nutku, “Bi-Hamiltonian structure of equations of associativity in 2D topological field theory”, Commun. Math. Phys., 186:3 (1997), 649–669 | DOI | MR

[15] A. Haantjes, “On $X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 17:2 (1955), 158–162 | DOI | MR