Integrable potentials by Darboux transformations in rings and quantum and classical problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 108-123
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a problem in associative rings of left and right factorization of a polynomial differential operator regarded as an evolution operator. In a direct sum of rings, the polynomial arising in the problem of dividing an operator by an operator for two commuting operators leads to a time-dependent left/right Darboux transformation based on an intertwining relation and either Miura maps or generalized Burgers equations. The intertwining relations lead to a differential equation including differentiations in a weak sense. In view of applications to operator problems in quantum and classical mechanics, we derive the direct quasideterminant or dressing chain formulas. We consider the transformation of creation and annihilation operators for specified matrix rings and study an example of the Dikke model.
Keywords:
factoring a polynomial differential operator, Darboux–Matveev transformation, generalized Miura transformation, Burgers equation, chain in a ring, dressing the Dicke Hamiltonian.
Mots-clés : Darboux transformation
Mots-clés : Darboux transformation
@article{TMF_2018_197_1_a5,
author = {S. B. Leble},
title = {Integrable potentials by {Darboux} transformations in rings and quantum and classical problems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {108--123},
publisher = {mathdoc},
volume = {197},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a5/}
}
TY - JOUR AU - S. B. Leble TI - Integrable potentials by Darboux transformations in rings and quantum and classical problems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 108 EP - 123 VL - 197 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a5/ LA - ru ID - TMF_2018_197_1_a5 ER -
S. B. Leble. Integrable potentials by Darboux transformations in rings and quantum and classical problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 108-123. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a5/