Mots-clés : Darboux transformation
@article{TMF_2018_197_1_a5,
author = {S. B. Leble},
title = {Integrable potentials by {Darboux} transformations in rings and quantum and classical problems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {108--123},
year = {2018},
volume = {197},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a5/}
}
TY - JOUR AU - S. B. Leble TI - Integrable potentials by Darboux transformations in rings and quantum and classical problems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 108 EP - 123 VL - 197 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a5/ LA - ru ID - TMF_2018_197_1_a5 ER -
S. B. Leble. Integrable potentials by Darboux transformations in rings and quantum and classical problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 108-123. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a5/
[1] V. B. Matveev, “Darboux transformations in associative rings and functional-difference equations”, The Bispectral Problem (Montreal, PQ, March 1997), CRM Proceedings and Lecture Notes, 14, eds. J. Harnad, A. Kasman, AMS, Providence, RI, 1998, 211–226 | DOI | MR
[2] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | MR
[3] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR
[4] S. B. Leble, “Otklik klassicheskoi mnogochastichnoi sistemy na dvukhimpulsnoe vozbuzhdenie”, Kogerentnoe vozbuzhdenie kondensirovannykh sred, ed. U. Kh. Kopvillem, Dalnevost. nauch. tsentr AN SSSR, Vladivostok, 1979, 51–74; С. Б. Лебле, А. И. Иванов, Метод вторичного квантования, Калинингр. гос. ун-т, Калининград, 1981
[5] S. B. Leble, “Metod odevaniya v kvantovykh modelyakh vzaimodeistviya izlucheniya s veschestvom”, TMF, 152:1 (2007), 118–132 | DOI | DOI | MR | Zbl
[6] L. I. Menshikov, “Sverkhizluchenie i nekotorye rodstvennye yavleniya”, UFN, 169:2 (1999), 113–154 | DOI | DOI
[7] N. M. Bogolyubov, P. P. Kulish, Zap. nauch. sem. POMI, 398 (2012), 26–54 | DOI | MR | Zbl
[8] V. B. Matveev, “Darboux transformation and explicit solutions of the Kadomtcev–Petviaschvily equation, depending on functional parameters”, Lett. Math. Phys., 3:3 (1979), 213–216 | DOI | MR
[9] S. Leble, A. Zaitsev, “Division of differential operators, intertwine relations and Darboux transformations”, Rep. Math. Phys., 46:1–2 (2000), 165–174 | DOI | MR
[10] P. Dubard, V. B. Matveev, “Multi-rogue waves solutions: from the NLS to the KP-I equation”, Nonlinearity, 26:12 (2013), R93–R125 | DOI | MR