Solitons in the domain structure of the ferromagnet
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 89-107
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By the method of dressing on a torus, we obtain and study solutions of the Landau–Lifshitz equation, which describe solitons in the stripe domain structure of the easy-axis ferromagnet. A specific feature of these solitons is that they are directly related to the domain structure{:} they induce translations and local oscillations of the domains. We find integrals of motion stabilizing the solitons on the background of the structure.
Mots-clés : domain structure, soliton
Keywords: Landau–Lifshitz equation, Riemann problem, integral of motion.
@article{TMF_2018_197_1_a4,
     author = {V. V. Kiselev and A. A. Raskovalov},
     title = {Solitons in the~domain structure of the~ferromagnet},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {89--107},
     year = {2018},
     volume = {197},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a4/}
}
TY  - JOUR
AU  - V. V. Kiselev
AU  - A. A. Raskovalov
TI  - Solitons in the domain structure of the ferromagnet
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 89
EP  - 107
VL  - 197
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a4/
LA  - ru
ID  - TMF_2018_197_1_a4
ER  - 
%0 Journal Article
%A V. V. Kiselev
%A A. A. Raskovalov
%T Solitons in the domain structure of the ferromagnet
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 89-107
%V 197
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a4/
%G ru
%F TMF_2018_197_1_a4
V. V. Kiselev; A. A. Raskovalov. Solitons in the domain structure of the ferromagnet. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 89-107. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a4/

[1] E. K. Sklyanin, O polnoi integriruemosti uravneniya Landau–Lifshitsa, Preprint LOMI E-3-79, LOMI, 1979

[2] A. E. Borovik, V. N. Robuk, “Lineinye psevdopotentsialy i zakony sokhraneniya dlya uravneniya Landau–Lifshitsa, opisyvayuschego nelineinuyu dinamiku ferromagnetika”, TMF, 46:3 (1981), 371–381 | DOI | MR

[3] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, Nelineinye volny namagnichennosti. Dinamicheskie i topologicheskie solitony, Naukova dumka, Kiev, 1983

[4] A. E. Borovik, S. Klama, S. I. Kulinich, “Integration of the Landau–Lifshitz equation with preferred-axis anisotropy by the method of the inverse scattering problem”, Phys. D, 32:1 (1988), 107–134 | DOI | MR

[5] A. B. Borisov, V. V. Kiselev, Kvaziodnomernye magnitnye solitony, Fizmatlit, M., 2014

[6] R. F. Bikbaev, A. I. Bobenko, A. P. Its, Uravnenie Landau–Lifshitsa. Teoriya tochnykh reshenii II, Preprint DonFTI-84-7(82), Donetskii fiz.-tekhn. in-t AN USSR, Donetsk, 1984

[7] R. F. Bikbaev, A. I. Bobenko, A. P. Its, “O konechnozonnom integrirovanii uravneniya Landau–Lifshitsa”, Dokl. AN SSSR, 272:6 (1983), 1293–1298 | MR | Zbl

[8] Yu. F. Mitropolskii, N. N. Bogolyubov (ml.), A. K. Prikarpatskii, V. G. Samoilenko, Integriruemye dinamicheskie sistemy: spektralnye i differentsialno–geometricheskie aspekty, Naukova dumka, Kiev, 1987 | MR

[9] A. I. Bobenko, “Veschestvennye algebro-geometricheskie resheniya uravneniya Landau–Lifshitsa v teta-funktsiyakh Prima”, Funkts. analiz i ego pril., 19:1 (1985), 6–19 | DOI | MR | Zbl

[10] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR

[11] P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, Berlin, 1971 | MR

[12] V. V. Kiselev, A. A. Raskovalov, “Nelineinaya dinamika kvaziodnomernoi spiralnoi struktury”, TMF, 173:2 (2012), 268–292 | DOI | DOI | MR

[13] V. V. Kiselev, A. A. Raskovalov, “Nelineinye kollektivnye vozbuzhdeniya v gelikoidalnykh magnitnykh strukturakh”, FMM, 113:12 (2012), 1180–1192 | DOI

[14] V. V. Kiselev, A. A. Raskovalov, “Solitons and nonlinear waves in the spiral magnetic structures”, Chaos, Solitons and Fractals, 84 (2016), 88–103 | DOI | MR

[15] A. V. Mikhailov, “The Landau–Lifschitz equation and the Riemann boundary problem on a torus”, Phys. Lett., 92:2 (1982), 51–55 | DOI | MR

[16] A. B. Borisov, V. V. Kiselev, “Mnogosolitonnye resheniya asimmetrichnykh kiralnykh $SU(2)$, $SL(2,R)$-teorii $(d=1)$”, TMF, 54:2 (1983), 246–257 | DOI | MR

[17] A. B. Borisov, “The hilbert problem for matrices and a new class of integrable equations”, Lett. Math. Phys., 7:3 (1983), 195–199 | DOI | MR

[18] A. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR

[19] V. V. Kiselev, A. A. Raskovalov, “Vzaimodeistvie brizera s volnoi namagnichennosti v ferromagnetike s anizotropiei tipa «legkaya os» ”, TMF, 163:1 (2010), 94–113 | DOI | DOI | Zbl

[20] V. V. Kiselev, A. A. Raskovalov, “Vynuzhdennoe dvizhenie uedinennykh domenov i domennykh granits v pole nelineinoi volny namagnichennosti”, FMM, 109:6 (2010), 625–638 | DOI

[21] V. V. Kiselev, A. A. Raskovalov, “Forced motion of breathers and domain boundaries against the background of nonlinear magnetization wave”, Chaos, Solitons and Fractals, 45:12 (2012), 1551–1565 | DOI

[22] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[23] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl