Keywords: integrable system, noncommutative geometry.
@article{TMF_2018_197_1_a3,
author = {M. Hamanaka and H. Okabe},
title = {Soliton scattering in noncommutative spaces},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {68--88},
year = {2018},
volume = {197},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a3/}
}
M. Hamanaka; H. Okabe. Soliton scattering in noncommutative spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 68-88. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a3/
[1] P. Etingof, I. Gelfand, V. Retakh, “Factorization of differential operators, quasideterminants, and nonabelian Toda field equations”, Math. Res. Lett., 4:3 (1997), 413–425, arXiv: q-alg/9701008 | DOI | MR
[2] I. M. Gelfand, V. S. Retakh, “Determinanty matrits nad nekommutativnymi koltsami”, Funkts. analiz i ego pril., 25:2 (1991), 13–25 ; “Теория некоммутативных детерминантов и характеристические функции графов”, 26:4 (1992), 1–20 | DOI | MR | Zbl | DOI | MR | Zbl
[3] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | DOI | MR
[4] P. Etingof, I. Gelfand, V. Retakh, “Nonabelian integrable systems, quasideterminants, and Marchenko lemma”, Math. Res. Lett., 5:1 (1998), 1–12, arXiv: q-alg/9707017 | DOI
[5] C. R. Gilson, M. Hamanaka, J. J. C. Nimmo, “Bäcklund transformations for noncommutative anti-self-dual Yang–Mills equations”, Glasg. Math. J., 51:A (2009), 83–93, arXiv: 0709.2069 | DOI | MR
[6] C. R. Gilson, M. Hamanaka, J. J. C. Nimmo, “Bäcklund transformations and the Atiyah–Ward ansatz for noncommutative anti-self-dual Yang–Mills equations”, Proc. Roy. Soc. Lond. Ser. A, 465:2108 (2009), 2613–2632 | DOI | MR
[7] C. R. Gilson, S. R. Macfarlane, “Dromion solutions of noncommutative Davey–Stewartson equations”, J. Phys. A: Math. Theor., 42:23 (2009), 235202, 20 pp., arXiv: 0901.4918 | DOI | MR
[8] C. R. Gilson, J. J. C. Nimmo, “On a direct approach to quasideterminant solutions of a noncommutative KP equation”, J. Phys. A: Math. Theor., 40:14 (2007), 3839–3850, arXiv: nlin/0701027 | DOI | MR
[9] C. R. Gilson, J. J. C. Nimmo, Y. Ohta, “Quasideterminant solutions of a non-Abelian Hirota–Miwa equation”, J. Phys. A: Math. Theor., 40:42 (2007), 12607–12618, arXiv: nlin/0702020 | DOI
[10] C. R. Gilson, J. J. C. Nimmo, C. M. Sooman, “On a direct approach to quasideterminant solutions of a noncommutative modified KP equation”, J. Phys. A: Math. Theor., 41:8 (2008), 085202, 10 pp., arXiv: 0711.3733 | DOI | MR
[11] B. Haider, M. Hassan, “The $U(N)$ chiral model and exact multi-solitons”, J. Phys. A: Math. Theor., 41:25 (2008), 255202, 17 pp., arXiv: 0912.1984 | DOI | MR
[12] M. Hamanaka, “Notes on exact multi-soliton solutions of noncommutative integrable hierarchies”, JHEP, 02 (2007), 094, 17 pp., arXiv: hep-th/0610006 | DOI | MR
[13] M. Hamanaka, “Noncommutative solitons and quasideterminants”, Phys. Scr., 89:3 (2014), 038006, 11 pp., arXiv: 1101.0005 | DOI
[14] C. X. Li, J. J. C. Nimmo, K. M. Tamizhmani, “On solutions to the non-Abelian Hirota–Miwa equation and its continuum limits”, Proc. Roy. Soc. London Ser. A, 465:2105 (2009), 1441–1451, arXiv: 0809.3833 | DOI | MR
[15] V. Retakh, V. Rubtsov, “Noncommutative Toda chains, Hankel quasideterminants and Painlevé II equation”, J. Phys. A: Math. Theor., 43:50 (2010), 505204, 13 pp., arXiv: 1007.4168 | DOI | MR
[16] M. Siddiq, U. Saleem, M. Hassan, “Darboux transformation and multi-soliton solutions of a noncommutative sine-Gordon system”, Modern Phys. Lett. A, 23:2 (2008), 115–127 | DOI | MR
[17] A. Dimakis, F. Müller-Hoissen, Extension of Moyal-deformed hierarchies of soliton equations, arXiv: nlin.si/0408023
[18] M. Hamanaka, Noncommutative solitons and D-branes, Ph. D. Thesis, University of Tokyo, Tokyo, 2003, arXiv: hep-th/0303256
[19] M. Hamanaka, “Noncommutative solitons and integrable systems”, Noncommutative Geometry and Physics (Keio, February 26 – March 3, 2004), eds. Y. Maeda, N. Tose, N. Miyazaki, S. Watamura, D. Sternheimer, World Sci., Singapore, 2005, 175–198, arXiv: hep-th/0504001 | DOI | MR
[20] M. Hamanaka, K. Toda, “Towards noncommutative integrable equations”, Symmetry in Nonlinear Mathematical Physics (Kiev, Ukraine, 23–29 June, 2003), ed. A. G. Nikitin, Institute of Mathematics of NASU, Kyiv, 2004, 404–411, arXiv: hep-th/0309265 | MR
[21] O. Lechtenfeld, “Noncommutative solitons”, Noncommutative Geometry and Physics 2005, Proceedings of the International Sendai–Beijing Joint Workshop (Sendai, Japan, 1–4 November, 2005; Beijing, China, 7–10 November, 2005), eds. U. Carow-Watamura, S. Watamura, Y. Maeda, H. Moriyoshi, Z. Liu, K. Wu, World Sci., Singapore, 2007, 175–200, arXiv: hep-th/0605034 | DOI | MR
[22] L. Mazzanti, Topics in noncommutative integrable theories and holographic brane-world cosmology, arXiv: 0712.1116
[23] L. Tamassia, Noncommutative supersymmetric/integrable models and string theory, arXiv: hep-th/0506064
[24] A. Dimakis, F. Müller-Hoissen, “Noncommutative Korteweg–de-Vries equation”, Phys. Lett. A, 278:3 (2000), 139–145, arXiv: hep-th/0007074 | DOI
[25] L. Martina, O. K. Pashaev, Burgers' equation in non-commutative space-time, arXiv: hep-th/0302055
[26] L. D. Paniak, Exact noncommutative KP and KdV multi-solitons, arXiv: hep-th/0105185
[27] J. E. Moyal, “Quantum mechanics as a statistical theory”, Proc. Cambridge Phil. Soc., 45:1 (1949), 99–124 ; H. J. Groenewold, “On the principles of elementary quantum mechanics”, Physica, 12:7 (1946), 405–460 | DOI | DOI | MR
[28] M. Hamanaka, K. Toda, “Noncommutative Burgers equation”, J. Phys. A: Math. Theor., 36:48 (2003), 11981–11998, arXiv: hep-th/0301213 | DOI
[29] M. Hamanaka, “Noncommutative Ward's conjecture and integrable systems”, Nucl. Phys. B, 741:3 (2006), 368–389, arXiv: hep-th/0601209 | DOI
[30] K. Toda, “Extensions of soliton equations to non-commutative $(2+1)$ dimensions”, PoS(unesp2002), 038, 12 pp. | DOI | MR
[31] M. Hamanaka, “On reductions of noncommutative anti-self-dual Yang–Mills equations”, Phys. Lett. B, 625:3–4 (2005), 324–332, arXiv: hep-th/0507112 | DOI
[32] M. Hamanaka, K. Toda, “Towards noncommutative integrable systems”, Phys. Lett. A, 316:1–2 (2003), 77–83, arXiv: hep-th/0211148 | DOI
[33] R. S. Ward, “Integrable and solvable systems, and relations among them”, Phil. Trans. Roy. Soc. London Ser. A, 315:1533 (1985), 451–457 | DOI | MR
[34] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | MR
[35] L. J. Mason, N. M. Woodhouse, Integrability, Self-Duality, and Twistor Theory, London Mathematical Society Monographs. New Series, 15, Oxford Univ. Press, Oxford, 1996 | MR
[36] I. Gelfand, S. Gelfand, V. Retakh, R. Wilson, “Quasideterminants”, Adv. Math., 193:1 (2005), 56–141, arXiv: math.QA/0208146 | DOI
[37] O. Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable Systems, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR
[38] M. Błaszak, Multi-Hamiltonian Theory of Dynamical Systems, Springer, Berlin, 1998 | MR
[39] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Sci., Singapore, 2003 | DOI | MR
[40] B. A. Kupershmidt, KP or mKP. Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems, Mathematical Surveys and Monographs, 78, AMS, Providence, RI, 2000 | DOI | MR
[41] M. Hamanaka, “Commuting flows and conservation laws for noncommutative Lax hierarchies”, J. Math. Phys., 46:5 (2005), 052701, 13 pp., arXiv: hep-th/0311206 | DOI | MR
[42] S. Carillo, M. Lo Schiavo, C. Schiebold, “Bäcklund transformations and non-abelian nonlinear evolution equations: a novel Bäcklund chart”, SIGMA, 12 (2016), 087, 17 pp., arXiv: 1512.02386 | MR
[43] B. G. Konopelchenko, W. Oevel, “Matrix Sato theory and integrable systems in $2+1$ dimensions”, Nonlinear Evolution Equations and Dynamical Systems, Proceedings of the Workshop NEEDS'91 (Baia Verde, Galipoli, Italy, 19–29 June, 1991), eds. M. Bolti, L. Martina, F. Pempinelli, World Sci., Singapore, 1992, 87–96 | MR
[44] W. X. Ma, “An extended noncommutative KP hierarchy”, J. Math. Phys., 51:7 (2010), 073505, 19 pp. | DOI | MR
[45] P. J. Olver, V. V. Sokolov, “Integrable evolution equations on associative algebras”, Commun. Math. Phys., 193:2 (1998), 245–268 | DOI | MR
[46] J. P. Wang, “On the structure of $(2+1)$–dimensional commutative and noncommutative integrable equations”, J. Math. Phys., 47:11 (2006), 113508, arXiv: nlin/0606036 | DOI
[47] N. Wang, M. Wadati, “Noncommutative KP hierarchy and Hirota triple-product relations”, J. Phys. Soc. Japan, 73:7 (2004), 1689–1698 | DOI | MR
[48] K. Ohkuma, M. Wadati, “The Kadomtsev–Petviashvili equation: the trace method and the soliton resonances”, J. Phys. Soc. Japan, 52:3 (1983), 749–760 | DOI | MR
[49] Y. Kodama, KP Solitons and the Grassmannians, Springer Briefs in Mathematical Physics, 22, Springer, Singapore, 2017 | DOI | MR
[50] I. A. B. Strachan, “A geometry for multidimensional integrable systems”, J. Geom. Phys., 21:3 (1997), 255–278, arXiv: hep-th/9604142 | DOI | MR
[51] M. J. Ablowitz, S. Chakravarty, L. A. Takhtajan, “A selfdual Yang–Mills hierarchy and its reductions to integrable systems in $(1+1)$-dimensions and $(2+1)$-dimensions”, Commun. Math. Phys., 158:2 (1993), 289–314 | DOI | MR
[52] Y. Nakamura, “Transformation group acting on a self-dual Yang–Mills hierarchy”, J. Math. Phys., 29:1 (1988), 244–248 | DOI | MR
[53] K. Suzuki, Explorations of a self-dual Yang–Mills hierarchy, Diploma thesis, Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen, 2006
[54] K. Takasaki, “A new approacht to the selfdual Yang–Mills equations”, Commun. Math. Phys., 94:1 (1984), 35–59 | DOI
[55] H. J. de Vega, “Non-linear multi-plane wave solutions of self-dual Yang–Mills theory”, Commun. Math. Phys., 116:4 (1988), 659–674 | DOI | MR
[56] D. K. Nimmo, K. R. Dzhilson, Ya. Okhta, “Primeneniya preobrazovanii Darbu k samodualnym uravneniyam Yanga–Millsa”, TMF, 122:2 (2000), 284–293 | DOI | DOI | MR | Zbl