Soliton scattering in noncommutative spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 68-88

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss exact multisoliton solutions of integrable hierarchies on noncommutative space–times in various dimensions. The solutions are represented by quasideterminants in compact forms. We study soliton scattering processes in the asymptotic region where the configurations can be real-valued. We find that the asymptotic configurations in the soliton scatterings can all be the same as commutative ones, i.e., the configuration of an $N$-soliton solution has $N$ isolated localized lumps of energy, and each solitary wave-packet lump preserves its shape and velocity in the scattering process. The phase shifts are also the same as commutative ones. As new results, we present multisoliton solutions of the noncommutative anti-self-dual Yang–Mills hierarchy and discuss two-soliton scattering in detail.
Mots-clés : soliton
Keywords: integrable system, noncommutative geometry.
@article{TMF_2018_197_1_a3,
     author = {M. Hamanaka and H. Okabe},
     title = {Soliton scattering in noncommutative spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {68--88},
     publisher = {mathdoc},
     volume = {197},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a3/}
}
TY  - JOUR
AU  - M. Hamanaka
AU  - H. Okabe
TI  - Soliton scattering in noncommutative spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 68
EP  - 88
VL  - 197
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a3/
LA  - ru
ID  - TMF_2018_197_1_a3
ER  - 
%0 Journal Article
%A M. Hamanaka
%A H. Okabe
%T Soliton scattering in noncommutative spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 68-88
%V 197
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a3/
%G ru
%F TMF_2018_197_1_a3
M. Hamanaka; H. Okabe. Soliton scattering in noncommutative spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 68-88. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a3/