Mots-clés : spectral decompositions
@article{TMF_2018_197_1_a2,
author = {G. G. Grahovski and A. J. Mustafa and H. Susanto},
title = {Nonlocal reductions of the~multicomponent nonlinear {Schr\"odinger} equation on symmetric spaces},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {45--67},
year = {2018},
volume = {197},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a2/}
}
TY - JOUR AU - G. G. Grahovski AU - A. J. Mustafa AU - H. Susanto TI - Nonlocal reductions of the multicomponent nonlinear Schrödinger equation on symmetric spaces JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 45 EP - 67 VL - 197 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a2/ LA - ru ID - TMF_2018_197_1_a2 ER -
%0 Journal Article %A G. G. Grahovski %A A. J. Mustafa %A H. Susanto %T Nonlocal reductions of the multicomponent nonlinear Schrödinger equation on symmetric spaces %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 45-67 %V 197 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a2/ %G ru %F TMF_2018_197_1_a2
G. G. Grahovski; A. J. Mustafa; H. Susanto. Nonlocal reductions of the multicomponent nonlinear Schrödinger equation on symmetric spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 45-67. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a2/
[1] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 ; “Интегрирование нелинейных уравнений математической физики методом обратной задачи рассеяния. II”, Функц. анализ и его прил., 13:3 (1979), 13–22 | DOI | MR | Zbl | DOI | MR | Zbl
[2] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl
[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[4] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, 748, Springer, Berlin–Heidelberg, 2008 | DOI | MR
[5] M. J. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge Univ. Press, Cambridge, 2004 | MR
[6] R. Beals, R. R. Coifman, “Scattering and inverse scattering for first order systems”, Commun. Pure Appl. Math., 37:1 (1984), 39–90 ; “Scattering and inverse scattering for first order systems: II”, Inverse Problems, 3:4 (1987), 577–594 | DOI | MR | DOI
[7] P. G. Drazin, R. S. Johnson, Solitons: An Introduction, Cambridge Univ. Press, Cambridge, 1989 | DOI | MR
[8] V. S. Gerdjikov, “Generalised Fourier transforms for the soliton equations. Gauge-covariant formulation”, Inverse Problems, 2 (1986), 51–74 | DOI | MR
[9] S. V. Manakov, “K teorii dvumernoi statsionarnoi samofokusirovki elektromagnitnykh voln”, ZhETF, 65:2 (1973), 505–516
[10] C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibres”, IEEE J. Quantum Electron, 23:2 (1987), 174–176 | DOI
[11] J. R. Ackerhalt, P. W. Milonni, “Solitons and four-wave mixing”, Phys. Rev. A, 33:5 (1986), 3185–3198 | DOI
[12] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, 34, AMS, Providence, RI, 2001 | DOI | MR
[13] R. Gilmore, Lie Groups, Lie Algebras and Some of Their Applications, Dover, Mineola, NY, 2005 | MR
[14] A. P. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Commun. Math. Phys., 89:3 (1983), 427–443 | DOI | MR
[15] C. Athorne, A. Fordy, “Generalised KdV and MKdV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20:6 (1987), 1377–1386 | DOI | MR
[16] A. P. Fordy, “Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces”, J. Phys. A: Math. Gen., 17:6 (1984), 1235–1245 | DOI | MR
[17] O. Loos, Symmetric Spaces, v. I, General Theory ; v. II, Compact Spaces and Classification, W. A. Benjamin, New York–Amsterdam, 1969 | MR | Zbl | MR
[18] P. P. Kulish, E. K. Sklyanin, “$\mathrm{O}(N)$-invariant nonlinear Schrödinger equation A new completely integrable system”, Phys. Lett. A, 84:7 (1981), 349–352 | DOI | MR
[19] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 24 (1984), 81–180 | DOI | MR | Zbl
[20] V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “Reductions of $N$-wave interactions related to low-rank simple Lie algebras: I. $\mathbb Z_2$-reductions”, J. Phys. A: Math. Gen., 34:44 (2001), 9425–9461, arXiv: nlin.SI/0006001 | DOI | MR
[21] V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, N. A. Kostov, “$N$-wave interactions related to simple Lie algebras. $\mathbb Z_2$-reductions and soliton solutions”, Inverse Problems, 17:4 (2001), 999–1015, arXiv: nlin.SI/0009034 | DOI | MR
[22] A. V. Mikhailov, “The reduction problem and the inverse scattering problem”, Phys. D, 3:1–2 (1981), 73–117 | DOI
[23] M. Ablowitz, Z. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI
[24] M. Ablowitz, Z. Musslimani, “Integrable discrete $\mathcal{PT}$ symmetric model”, Phys. Rev. E, 90 (2014), 032912, 5 pp. | DOI
[25] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR
[26] V. S. Gerdjikov, A. Saxena, “Complete integrability of nonlocal nonlinear Schrödinger equation”, J. Math. Phys., 58:1 (2017), 013502, 33 pp., arXiv: 1510.0480 | DOI | MR
[27] V. E. Zakharov, A. V. Mikhailov, “On the integrability of classical spinor models in two-dimensional space-time”, Commun. Math. Phys., 74:1 (1980), 21–40 | DOI | MR
[28] F. K. Abdullaev, Y. V. Kartashov, V. V. Konotop, D. A. Zezyulin, “Solitons in PT-symmetric nonlinear lattices”, Phys. Rev. A, 83:4 (2011), 041805, 4 pp. | DOI
[29] I. V. Barashenkov, “Hamiltonian formulation of the standard $\mathcal{PT}$-symmetric nonlinear Schrödinger dimer”, Phys. Rev. A, 90:4 (2014), 045802, 4 pp. | DOI
[30] I. V. Barashenkov, D. E. Pelinovsky, P. Dubard, “Dimer with gain and loss: integrability and $\mathcal{PT}$-symmetry restoration”, J. Phys. A: Math. Theor., 48:32 (2015), 325201, 28 pp. | DOI | MR
[31] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip, “Observation of parity-time symmetry in optics”, Nature Phys., 6 (2010), 192–195 | DOI
[32] A. A. Zyablovskii, A. P. Vinogradov, A. A. Pukhov, A. V. Dorofeenko, A. A. Lisyanskii, “PT-simmetriya v optike”, UFN, 184:11 (2014), 1177–1198 | DOI | DOI
[33] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 ; C. M. Bender, S. Boettcher, P. N. Meisinger, “$\mathcal{PT}$-symmetric quantum mechanics”, J. Math. Phys., 40:5 (1999), 2201–2229 | DOI | MR | DOI | MR
[34] A. Mostafazadeh, “Pseudo-Hermiticity versus $\mathcal{PT}$-symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214, arXiv: math-ph/0107001 | DOI | MR
[35] A. Mostafazadeh, “Pseudo-Hermiticity and generalized $\mathcal{PT}$- and $\mathcal{CPT}$-symmetries”, J. Math. Phys., 44:3 (2003), 974–989, arXiv: math-ph/0209018 | DOI | MR
[36] C. M. Bender, “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70:6 (2007), 947–1018, arXiv: hep-th/0703096 | DOI | MR
[37] A. Fring, “$\mathcal{PT}$-symmetric deformations of integrable models”, Phil. Trans. Roy. Soc. London Ser. A, 371:1989 (2013), 20120046, 18 pp., arXiv: 1204.2291 | DOI | MR
[38] A. Fring, “$\mathcal{PT}$-symmetric deformations of the Korteweg–de Vries equation”, J. Phys. A: Math. Theor., 40:15 (2007), 4215–4224, arXiv: math-ph/0701036 | DOI | MR
[39] V. S. Gerdjikov, “Basic aspects of soliton theory”, Proceedings of the Sixth International Conference on Geometry, Integrability and Quantization (Varna, Bulgaria, Sofia, 2–10 June, 2005), eds. I. M. Mladenov, A. C. Hirshfeld, Softex, Sofia, 2005, 78–125 | MR
[40] V. S. Gerdjikov, D. J. Kaup, N. A. Kostov, T. I. Valchev, “On classification of soliton solutions of multicomponent nonlinear evolution equations”, J. Phys. A: Math. Theor., 41:31 (2008), 315213, 36 pp. | DOI | MR
[41] V. S. Gerdjikov, “On nonlocal models of Kulish–Sklyanin type and generalized Fourier transforms”, Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence, 681, Springer, Cham, 2017, 37–52 | MR
[42] V. S. Gerdzhikov, “Modeli tipa Kulisha–Sklyanina: integriruemost i reduktsii”, TMF, 192:2 (2017), 187–206, arXiv: 1702.04010 | DOI | MR
[43] V. S. Gerdjikov, G. G. Grahovski, “Multi-component NLS models on symmetric spaces: spectral properties versus representations theory”, SIGMA, 6 (2010), 044, 29 pp. | DOI | MR
[44] V. S. Gerdjikov, “On reductions of soliton solutions of multi-component NLS models and spinor Bose–Einstein condensates”, Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 1186, eds. M. D. Todorov, C. I. Christov, AIP, Melville, NY, 2009, 15–27 | DOI | MR
[45] G. G. Grahovski, “On the reductions and scattering data for the generalized Zakharov–Shabat systems”, Nonlinear Physics: Theory and Experiment. II, eds. M. J. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari, World Sci., Singapore, 2003, 71–78 | DOI | MR
[46] T. I. Valchev, “On Mikhailov's reduction group”, Phys. Lett. A, 379:34–35 (2015), 1877–1880 | DOI | MR
[47] V. A. Atanasov, V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “Fordy–Kulish model and spinor Bose–Einstein condensate”, J. Nonlinear Math. Phys., 15:3 (2008), 291–298 | DOI | MR
[48] G. G. Grahovski, V. S. Gerdjikov, N. A. Kostov, “On the multicomponent NLS type equations on symmetric spaces: reductions and soliton solutions”, Proceedings of the Sixth International Conference on Geometry, Integrability and Quantization (Varna, Bulgaria, Sofia, 2–10 June, 2005), eds. I. M. Mladenov, A. C. Hirshfeld, Softex, Sofia, 2005, 203–217 | MR
[49] V. S. Gerdjikov, P. P. Kulish, “The generating operator for the $n\times n$ linear system”, Phys. D, 3:3 (1981), 549–564 | DOI | MR
[50] R. Ivanov, “On the dressing method for the generalised Zakharov–Shabat system”, Nucl. Phys. B, 694 (2004), 509–524, arXiv: math-ph/0402031 | DOI | MR
[51] V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “On $N$-wave type systems and their gauge equivalent”, Eur. J. Phys. B, 29:2 (2002), 243–248 | DOI | MR
[52] V. S. Gerdjikov, “Algebraic and analytic aspects of $N$-wave type equations”, The Legacy of the Inverse Scattering Transform in Applied Mathematics (South Hadley, MA, June 17–21, 2001), Contemporary Mathematics, 301, eds. J. Bona, R. Choudhury, D. Kaup, AMS, Providence, RI, 2002, 35–68, arXiv: nlin.SI/0206014 | DOI | MR
[53] A. B. Shabat, “Obratnaya zadacha rasseyaniya dlya sistemy differentsialnykh uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 75–78 ; “Обратная задача рассеяния”, Дифференц. уравнения, 15:10 (1979), 1824–1834 | DOI | MR | Zbl | MR | Zbl
[54] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | DOI | MR
[55] V. S. Gerdzhikov, G. G. Grakhovski, A. V. Mikhailov, T. I. Valchev, “Ratsionalnye puchki i rekursionnye operatory dlya integriruemykh uravnenii na simmetrichnykh prostranstvakh tipa A.III”, TMF, 167:3 (2011), 394–406 | DOI | DOI | MR
[56] V. S. Gerdjikov, G. G. Grahovski, A. V. Mikhailov, T. I. Valchev, “Polynomial bundles and generalised Fourier transforms for integrable equations on A.III-type symmetric spaces”, SIGMA, 7 (2011), 096, 48 pp. | DOI | MR
[57] G. G. Grahovski, M. Condon, “On the Caudrey–Beals–Coifman system and the gauge group action”, J. Nonlin. Math. Phys., 15, suppl. 3 (2008), 197–208, arXiv: 0710.3302 | DOI | MR
[58] G. G. Grahovski, V. S. Gerdjikov, N. A. Kostov, V. A. Atanasov, “New integrable multi-component NLS type equations on symmetric spaces: $\mathbb Z_4$ and $\mathbb Z_6$ reductions”, Proceedings of the Seventh International Conference on Geometry Integrability and Quantization (Varna, Bulgaria), eds. Iv. M. Mladenov, M. de Leon, Softex, Sofia, 2006, 154–175 | MR
[59] M. Gürses, “Nonlocal Fordy–Kulish equations on symmetric spaces”, Phys. Lett. A, 381:21 (2017), 1791–1794, arXiv: 1702.03731 | DOI | MR
[60] M. J. Ablowitz, X.-D. Luo, Z. H. Musslimani, Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions, arXiv: 1612.02726 | MR
[61] M. Li, T. Xu, “Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential”, Phys. Rev. E, 91:3 (2015), 033202, 8 pp. | DOI | MR
[62] V. S. Gerdzhikov, G. G. Grakhovski, R. I. Ivanov, “$N$-volnovye uravneniya s $\mathcal{PT}$-simmetriei”, TMF, 188:3 (2016), 397–415 | DOI | DOI | MR
[63] V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, “On integrable wave interactions and Lax pairs on symmetric spaces”, Wave Motion, 71 (2017), 53–70 | DOI | MR
[64] A. G. Reiman, “Edinaya gamiltonova sistema na polinomialnykh puchkakh i struktura statsionarnykh zadach”, Zap. nauch. semin. LOMI, 131 (1983), 118–127 | MR | Zbl
[65] A. G. Reiman, M. A. Semënov-Tyan-Shanskii, “Algebry tokov i nelineinye uravneniya v chastnykh proizvodnykh”, Dokl. AN SSSR, 251:6 (1980), 1310–1314 | MR | Zbl
[66] V. S. Gerdjikov, N. A. Kostov, T. I. Valchev, “$N$-wave equations with orthogonal algebras: $\mathbb Z_2$ and $\mathbb Z_2\times\mathbb Z_2$ reductions and soliton solutions”, SIGMA, 3 (2007), 039, 19 pp. | DOI | MR