Nonlocal reductions of the Ablowitz–Ladik equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 24-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Our purpose is to develop the inverse scattering transform for the nonlocal semidiscrete nonlinear Schrödinger equation (called the Ablowitz–Ladik equation) with $\mathcal{PT}$ symmetry. This includes the eigenfunctions (Jost solutions) of the associated Lax pair, the scattering data, and the fundamental analytic solutions. In addition, we study the spectral properties of the associated discrete Lax operator. Based on the formulated (additive) Riemann–Hilbert problem, we derive the one- and two-soliton solutions for the nonlocal Ablowitz–Ladik equation. Finally, we prove the completeness relation for the associated Jost solutions. Based on this, we derive the expansion formula over the complete set of Jost solutions. This allows interpreting the inverse scattering transform as a generalized Fourier transform.
Keywords: integrable system, PT symmetry, nonlocal reduction, Riemann–Hilbert problem.
Mots-clés : soliton
@article{TMF_2018_197_1_a1,
     author = {G. G. Grahovski and A. Mohammed and H. Susanto},
     title = {Nonlocal reductions of {the~Ablowitz{\textendash}Ladik} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {24--44},
     year = {2018},
     volume = {197},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a1/}
}
TY  - JOUR
AU  - G. G. Grahovski
AU  - A. Mohammed
AU  - H. Susanto
TI  - Nonlocal reductions of the Ablowitz–Ladik equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 24
EP  - 44
VL  - 197
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a1/
LA  - ru
ID  - TMF_2018_197_1_a1
ER  - 
%0 Journal Article
%A G. G. Grahovski
%A A. Mohammed
%A H. Susanto
%T Nonlocal reductions of the Ablowitz–Ladik equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 24-44
%V 197
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a1/
%G ru
%F TMF_2018_197_1_a1
G. G. Grahovski; A. Mohammed; H. Susanto. Nonlocal reductions of the Ablowitz–Ladik equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 24-44. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a1/

[1] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl

[2] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, 748, Springer, Berlin, Heidelberg, 2008 | DOI | MR

[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[4] A. B. Shabat, “Obratnaya zadacha rasseyaniya dlya sistemy differentsialnykh uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 75–78 ; “Обратная задача рассеяния”, Дифференц. уравнения, 15:10 (1979), 1824–1834 | DOI | MR | Zbl | MR | Zbl

[5] M. Bruschi, S. V. Manakov, O. Ragnisco, D. Levi, “Evolution equations associated with the discrete analog of the matrix Schrödinger spectral problem solvable by IST”, J. Math. Phys., 22:11 (1981), 2463–2471 | DOI | MR

[6] V. S. Gerdjikov, “Generalised Fourier transforms for the soliton equations. Gauge covariant formulation”, Inverse Problems, 2:1 (1986), 51–74 | DOI | MR

[7] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 ; “Интегрирование нелинейных уравнений математической физики методом обратной задачи рассеяния. II”, Функц. анализ и его прил., 13:3 (1979), 13–22 | DOI | MR | Zbl | DOI | MR | Zbl

[8] M. J. Ablowitz, B. Prinari, D. A. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge Univ. Press, Cambridge, 2004 | MR

[9] V. A. Atanasov, V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “Fordy–Kulish model and spinor Bose–Einstein condensate”, J. Nonlinear Math. Phys., 15:3 (2008), 291–298 | DOI | MR

[10] V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, N. A. Kostov, “$N$-wave interactions related to simple Lie algebras. ${\mathbb Z}_2$-reductions and soliton solutions”, Inverse Problems, 17:4 (2001), 999–1015, arXiv: nlin.SI/0009034 | DOI | MR

[11] V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “On $N$-wave type systems and their Gauge equivalent”, Eur. J. Phys. B, 29:1 (2002), 243–248, arXiv: nlin/0111027 | DOI | MR

[12] V. S. Gerdzhikov, G. G. Grakhovski, A. V. Mikhailov, T. I. Valchev, “Ratsionalnye puchki i rekursionnye operatory dlya integriruemykh uravnenii na simmetrichnykh prostranstvakh tipa A.III”, TMF, 167:3 (2011), 394–406 | DOI | DOI | MR

[13] V. S. Gerdjikov, G. G. Grahovski, A. V. Mikhailov, T. I. Valchev, “Polynomial bundles and generalized Fourier transforms for integrable equations on A.III-type symmetric spaces”, SIGMA, 7 (2011), 48, 096 | DOI | MR

[14] G. G. Grahovski, “On the reductions and scattering data for the generalized Zakharov–Shabat systems”, Nonlinear Physics: Theory and Experiment. II (Gallipoli, Italy, 27 June – 6 July, 2002), eds. M. J. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari, World Sci., Singapore, 2003, 71–78 ; G. G. Grahovski, M. Condon, “On the Caudrey–Beals–Coifman system and the gauge group action”, J. Nonlinear Math. Phys., 15, suppl. 3 (2008), 197–208, arXiv: 0710.3302 | DOI | MR | DOI | MR

[15] A. P. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Commun. Math. Phys., 89:3 (1983), 427–443 | DOI | MR

[16] A. V. Mikhailov, “The reduction problem and the inverse scattering problem”, Phys. D, 3:1–2 (1981), 73–117 | DOI

[17] T. I. Valchev, “On Mikhailov's reduction group”, Phys. Lett. A, 379:34–35 (2015), 1877–1880 | DOI | MR

[18] V. E. Zakharov, “Tochnye resheniya v zadache o parametricheskom vzaimodeistvii trekhmernykh volnovykh paketov”, Dokl. AN SSSR, 228:6 (1976), 1314–1316 | MR | Zbl

[19] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR

[20] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations and Fourier analysis”, J. Math. Phys., 17:6 (1976), 1011–1018 | DOI | MR

[21] M. J. Ablowitz, J. F. Ladik, “A nonlinear difference scheme and inverse scattering”, Stud. Appl. Math., 55:3 (1976), 213–229 | DOI | MR

[22] M. J. Ablowitz, B. Prinari, D. A. Trubatch, “Discrete vector solitons: composite solitons, Yang–Baxter maps and computation”, Stud. App. Math., 116:1 (2006), 97–133 | DOI | MR

[23] M. J. Ablowitz, G. Biondini, B. Prinari, “Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with non-vanishing boundary conditions”, Inverse Problems, 23:4 (2007), 1711–1758 | DOI | MR

[24] G. Biondini, A. Bui, “The Ablowitz–Ladik system with linearizable boundary conditions”, J. Phys. A: Math. Theor., 48:37 (2015), 375202, 31 pp. | DOI | MR

[25] V. S. Gerdzhikov, M. I. Ivanov, “Gamiltonova struktura mnogokomponentnykh raznostnykh nelineinykh uravnenii Shredingera”, TMF, 52:1 (1982), 89–104 | DOI | MR

[26] V. S. Gerdzhikov, M. I. Ivanov, Blochnaya diskretnaya sistema Zakharova–Shabata I:, Preprint OIYaI E2-81-811, OIYaI, Dubna, 1981

[27] B. C. Gerdzhikov, M. I. Ivanov, P. P. Kulish, Polnaya integriruemost raznostnykh evolyutsionnykh uravnenii, Preprint OIYaI E2-80-882, OIYaI, Dubna, 1981

[28] V. S. Gerdjikov, M. I. Ivanov, P. P. Kulish, “Expansions over the ‘squared’ solutions and difference evolution equations”, J. Math. Phys., 25:1 (1984), 25–34 | DOI | MR

[29] S. Takeno, K. Hori, “A propagating self-localized mode in a one-dimensional lattice with quartic anharmonicity”, J. Phys. Soc. Japan, 59:9 (1990), 3037–3040 | DOI

[30] V. M. Kenkre, D. K. Campbell, “Self-trapping on a dimer: time-dependent solutions of a discrete nonlinear Schrödinger equation”, Phys. Rev. B, 34:7 (1986), 4959–4961 | DOI

[31] Y. Ishimori, “An integrable classical spin chain”, J. Phys. Soc. Japan, 51:11 (1982), 3417–3418 | DOI | MR

[32] N. Papanicoulau, “Complete integrability for a discrete Heisenberg chain”, J. Phys. A: Math. Gen., 20:12 (1987), 3637–3652 | DOI | MR

[33] M. J. Ablowitz, Y. Ohta, D. A. Trubatch, “On discretizations of the vector nonlinear Schrödinger equation”, Phys. Lett. A, 253:5–6 (1999), 287–304 | DOI | MR

[34] M. Bruschi, S. V. Manakov, O. Ragnisco, D. Levi, “The nonabelian Toda lattice: discrete analogue of the matrix Schrödinger spectral problem”, J. Math. Phys., 21:12 (1980), 2749–2753 | DOI | MR

[35] T. Tsuchida, H. Ujino, M. Wadati, “Integrable semi-discretization of the coupled nonlinear Schrödinger equations”, J. Phys. A: Math. Gen., 32:11 (1999), 2239–2262 | DOI | MR

[36] V. E. Vekslerchik, V. V. Konotop, “Discrete nonlinear Schrödinger equation under non-vanishing boundary conditions”, Inverse Problems, 8:6 (1992), 889–909 | DOI | MR

[37] V. E. Vekslerchik, “Finite nonlinear Schrödinger chain”, Phys. Lett. A, 174:4 (1993), 285–288 | DOI | MR

[38] V. E. Vekslerchik, “Functional representation of the Ablowitz–Ladik hierarchy”, J. Phys. A: Math. Gen., 31:3 (1998), 1087–1099 ; “Functional representation of the Ablowitz–Ladik hierarchy. II”, J. Nonlinear Math. Phys., 9:2 (2002), 157–180 | DOI | MR | DOI | MR

[39] E. V. Doktorov, N. P. Matsuka, V. M. Rothos, “Perturbation-induced radiation by the Ablowitz–Ladik soliton”, Phys. Rev. E, 68:8 (2003), 066610, 14, 14 pp. | DOI | MR

[40] E. V. Doktorov, N. P. Matsuka, V. M. Rothos, “Dynamics of the Ablowitz–Ladik soliton train”, Phys. Rev. E, 69:5 (2004), 056607, 7 pp. | DOI | MR

[41] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI

[42] V. S. Gerdjikov, A. Saxena, “Complete integrability of nonlocal nonlinear Schrödinger equation”, J. Math. Phys., 58:1 (2017), 013502, 33 pp., arXiv: 1510.0480 | DOI | MR

[43] M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete $\mathcal{PT}$ symmetric model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp. | DOI

[44] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR

[45] F. K. Abdullaev, Y. V. Kartashov, V. V. Konotop, D. A. Zezyulin, “Solitons in PT-symmetric nonlinear lattices”, Phys. Rev. A, 83:4 (2011), 041805, 4 pp., arXiv: 1104.0276 | DOI

[46] I. V. Barashenkov, “Hamiltonian formulation of the standard $\mathcal{PT}$-symmetric nonlinear Schrödinger dimer”, Phys. Rev. A, 90:4 (2014), 045802, 4 pp. | DOI

[47] A. Fring, “$\mathcal{PT}$-symmetric deformations of integrable models”, Philos. Trans. R. Soc. Lond. Ser. A, 371:1989 (2013), 20120046, 18 pp. | DOI | MR

[48] A. A. Zyablovskii, A. P. Vinogradov, A. A. Pukhov, A. V. Dorofeenko, A. A. Lisyanskii, “PT-simmetriya v optike”, UFN, 184:11 (2014), 1177–1198 | DOI | DOI

[49] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 ; C. M. Bender, S. Boettcher, P. N. Meisinger, “$\mathcal{PT}$-Symmetric quantum Mechanics”, J. Math. Phys., 40:5 (1999), 2201–2229, arXiv: quant-ph/9809072 | DOI | MR | DOI | MR

[50] A. Mostafazadeh, “Pseudo-hermiticity versus $\mathcal{PT}$-symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214, arXiv: ; “Pseudo-hermiticity versus $\mathcal{PT}$-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum”, 43:5 (2002), 2814–2816, arXiv: ; “Pseudo-hermiticity versus $\mathcal{PT}$-Symmetry. III: equivalence of pseudo-Hermiticity and the presence of antilinear symmetries”, 3944–3951, arXiv: math-ph/0107001math-ph/0110016math-ph/0203005 | DOI | MR | DOI | DOI

[51] C. M. Bender, “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70:6 (2007), 947–1018, arXiv: hep-th/0703096 | DOI | MR

[52] A. Mostafazadeh, “Pseudo-Hermiticity and generalized $\mathcal{PT}$- and ${\mathcal CPT}$-symmetries”, J. Math. Phys., 44:3 (2003), 974–989, arXiv: math-ph/0209018 | DOI | MR

[53] V. S. Gerdzhikov, G. G. Grakhovski, R. I. Ivanov, “$N$-volnovye uravneniya s $\mathcal{PT}$-simmetriei”, TMF, 188:3 (2016), 397–415 | DOI | MR

[54] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip, “Observation of parity-time symmetry in optics”, Nature Phys., 6 (2010), 192–195 | DOI

[55] V. S. Gerdjikov, G. G. Grahovski, “Multi-component NLS models on symmetric spaces: spectral properties versus representations theory”, SIGMA, 6 (2010), 044, 29 pp., arXiv: 1006.0301 | DOI | MR

[56] V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “Reductions of $N$-wave interactions related to low-rank simple Lie algebras. I. ${\mathbb Z}_2$-reductions”, J. Phys. A: Math. Gen., 34:44 (2001), 9425–9461, arXiv: nlin.SI/0006001 | DOI | MR

[57] V. S. Gerdjikov, P. P. Kulish, “The generating operator for the $n\times n$ linear system”, Phys. D, 3:3 (1981), 549–564 | DOI | MR

[58] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | DOI | MR

[59] M. J. Ablowitz, X.-D. Luo, Z. H. Musslimani, “Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 59:1 (2018), 011501, 42 pp., arXiv: 1612.02726 | DOI | MR

[60] M. Li, T. Xu, “Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential”, Phys. Rev. E, 91:3 (2015), 033202, 8 pp. | DOI | MR

[61] M. Li, T. Xu, D. Meng, “Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model”, J. Phys. Soc. Japan, 85 (2016), 124001, 9 pp., arXiv: 1503.02254 | DOI

[62] B. Prinari, F. Vitale, “Inverse scattering transform for the focusing Ablowitz–Ladik system with nonzero boundary conditions”, Stud. Appl. Math., 137:1 (2016), 28–52 | DOI | MR

[63] V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, “On integrable wave interactions and Lax pairs on symmetric spaces”, Wave Motion, 71 (2017), 53–70 | DOI | MR

[64] M. Gürses, “Nonlocal Fordy–Kulish equations on symmetric spaces”, Phys. Lett. A, 381:21 (2017), 1791–1794 | DOI | MR