Mots-clés : soliton
@article{TMF_2018_197_1_a1,
author = {G. G. Grahovski and A. Mohammed and H. Susanto},
title = {Nonlocal reductions of {the~Ablowitz{\textendash}Ladik} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {24--44},
year = {2018},
volume = {197},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a1/}
}
G. G. Grahovski; A. Mohammed; H. Susanto. Nonlocal reductions of the Ablowitz–Ladik equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 24-44. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a1/
[1] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl
[2] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, 748, Springer, Berlin, Heidelberg, 2008 | DOI | MR
[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[4] A. B. Shabat, “Obratnaya zadacha rasseyaniya dlya sistemy differentsialnykh uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 75–78 ; “Обратная задача рассеяния”, Дифференц. уравнения, 15:10 (1979), 1824–1834 | DOI | MR | Zbl | MR | Zbl
[5] M. Bruschi, S. V. Manakov, O. Ragnisco, D. Levi, “Evolution equations associated with the discrete analog of the matrix Schrödinger spectral problem solvable by IST”, J. Math. Phys., 22:11 (1981), 2463–2471 | DOI | MR
[6] V. S. Gerdjikov, “Generalised Fourier transforms for the soliton equations. Gauge covariant formulation”, Inverse Problems, 2:1 (1986), 51–74 | DOI | MR
[7] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 ; “Интегрирование нелинейных уравнений математической физики методом обратной задачи рассеяния. II”, Функц. анализ и его прил., 13:3 (1979), 13–22 | DOI | MR | Zbl | DOI | MR | Zbl
[8] M. J. Ablowitz, B. Prinari, D. A. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge Univ. Press, Cambridge, 2004 | MR
[9] V. A. Atanasov, V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “Fordy–Kulish model and spinor Bose–Einstein condensate”, J. Nonlinear Math. Phys., 15:3 (2008), 291–298 | DOI | MR
[10] V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, N. A. Kostov, “$N$-wave interactions related to simple Lie algebras. ${\mathbb Z}_2$-reductions and soliton solutions”, Inverse Problems, 17:4 (2001), 999–1015, arXiv: nlin.SI/0009034 | DOI | MR
[11] V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “On $N$-wave type systems and their Gauge equivalent”, Eur. J. Phys. B, 29:1 (2002), 243–248, arXiv: nlin/0111027 | DOI | MR
[12] V. S. Gerdzhikov, G. G. Grakhovski, A. V. Mikhailov, T. I. Valchev, “Ratsionalnye puchki i rekursionnye operatory dlya integriruemykh uravnenii na simmetrichnykh prostranstvakh tipa A.III”, TMF, 167:3 (2011), 394–406 | DOI | DOI | MR
[13] V. S. Gerdjikov, G. G. Grahovski, A. V. Mikhailov, T. I. Valchev, “Polynomial bundles and generalized Fourier transforms for integrable equations on A.III-type symmetric spaces”, SIGMA, 7 (2011), 48, 096 | DOI | MR
[14] G. G. Grahovski, “On the reductions and scattering data for the generalized Zakharov–Shabat systems”, Nonlinear Physics: Theory and Experiment. II (Gallipoli, Italy, 27 June – 6 July, 2002), eds. M. J. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari, World Sci., Singapore, 2003, 71–78 ; G. G. Grahovski, M. Condon, “On the Caudrey–Beals–Coifman system and the gauge group action”, J. Nonlinear Math. Phys., 15, suppl. 3 (2008), 197–208, arXiv: 0710.3302 | DOI | MR | DOI | MR
[15] A. P. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Commun. Math. Phys., 89:3 (1983), 427–443 | DOI | MR
[16] A. V. Mikhailov, “The reduction problem and the inverse scattering problem”, Phys. D, 3:1–2 (1981), 73–117 | DOI
[17] T. I. Valchev, “On Mikhailov's reduction group”, Phys. Lett. A, 379:34–35 (2015), 1877–1880 | DOI | MR
[18] V. E. Zakharov, “Tochnye resheniya v zadache o parametricheskom vzaimodeistvii trekhmernykh volnovykh paketov”, Dokl. AN SSSR, 228:6 (1976), 1314–1316 | MR | Zbl
[19] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR
[20] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations and Fourier analysis”, J. Math. Phys., 17:6 (1976), 1011–1018 | DOI | MR
[21] M. J. Ablowitz, J. F. Ladik, “A nonlinear difference scheme and inverse scattering”, Stud. Appl. Math., 55:3 (1976), 213–229 | DOI | MR
[22] M. J. Ablowitz, B. Prinari, D. A. Trubatch, “Discrete vector solitons: composite solitons, Yang–Baxter maps and computation”, Stud. App. Math., 116:1 (2006), 97–133 | DOI | MR
[23] M. J. Ablowitz, G. Biondini, B. Prinari, “Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with non-vanishing boundary conditions”, Inverse Problems, 23:4 (2007), 1711–1758 | DOI | MR
[24] G. Biondini, A. Bui, “The Ablowitz–Ladik system with linearizable boundary conditions”, J. Phys. A: Math. Theor., 48:37 (2015), 375202, 31 pp. | DOI | MR
[25] V. S. Gerdzhikov, M. I. Ivanov, “Gamiltonova struktura mnogokomponentnykh raznostnykh nelineinykh uravnenii Shredingera”, TMF, 52:1 (1982), 89–104 | DOI | MR
[26] V. S. Gerdzhikov, M. I. Ivanov, Blochnaya diskretnaya sistema Zakharova–Shabata I:, Preprint OIYaI E2-81-811, OIYaI, Dubna, 1981
[27] B. C. Gerdzhikov, M. I. Ivanov, P. P. Kulish, Polnaya integriruemost raznostnykh evolyutsionnykh uravnenii, Preprint OIYaI E2-80-882, OIYaI, Dubna, 1981
[28] V. S. Gerdjikov, M. I. Ivanov, P. P. Kulish, “Expansions over the ‘squared’ solutions and difference evolution equations”, J. Math. Phys., 25:1 (1984), 25–34 | DOI | MR
[29] S. Takeno, K. Hori, “A propagating self-localized mode in a one-dimensional lattice with quartic anharmonicity”, J. Phys. Soc. Japan, 59:9 (1990), 3037–3040 | DOI
[30] V. M. Kenkre, D. K. Campbell, “Self-trapping on a dimer: time-dependent solutions of a discrete nonlinear Schrödinger equation”, Phys. Rev. B, 34:7 (1986), 4959–4961 | DOI
[31] Y. Ishimori, “An integrable classical spin chain”, J. Phys. Soc. Japan, 51:11 (1982), 3417–3418 | DOI | MR
[32] N. Papanicoulau, “Complete integrability for a discrete Heisenberg chain”, J. Phys. A: Math. Gen., 20:12 (1987), 3637–3652 | DOI | MR
[33] M. J. Ablowitz, Y. Ohta, D. A. Trubatch, “On discretizations of the vector nonlinear Schrödinger equation”, Phys. Lett. A, 253:5–6 (1999), 287–304 | DOI | MR
[34] M. Bruschi, S. V. Manakov, O. Ragnisco, D. Levi, “The nonabelian Toda lattice: discrete analogue of the matrix Schrödinger spectral problem”, J. Math. Phys., 21:12 (1980), 2749–2753 | DOI | MR
[35] T. Tsuchida, H. Ujino, M. Wadati, “Integrable semi-discretization of the coupled nonlinear Schrödinger equations”, J. Phys. A: Math. Gen., 32:11 (1999), 2239–2262 | DOI | MR
[36] V. E. Vekslerchik, V. V. Konotop, “Discrete nonlinear Schrödinger equation under non-vanishing boundary conditions”, Inverse Problems, 8:6 (1992), 889–909 | DOI | MR
[37] V. E. Vekslerchik, “Finite nonlinear Schrödinger chain”, Phys. Lett. A, 174:4 (1993), 285–288 | DOI | MR
[38] V. E. Vekslerchik, “Functional representation of the Ablowitz–Ladik hierarchy”, J. Phys. A: Math. Gen., 31:3 (1998), 1087–1099 ; “Functional representation of the Ablowitz–Ladik hierarchy. II”, J. Nonlinear Math. Phys., 9:2 (2002), 157–180 | DOI | MR | DOI | MR
[39] E. V. Doktorov, N. P. Matsuka, V. M. Rothos, “Perturbation-induced radiation by the Ablowitz–Ladik soliton”, Phys. Rev. E, 68:8 (2003), 066610, 14, 14 pp. | DOI | MR
[40] E. V. Doktorov, N. P. Matsuka, V. M. Rothos, “Dynamics of the Ablowitz–Ladik soliton train”, Phys. Rev. E, 69:5 (2004), 056607, 7 pp. | DOI | MR
[41] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI
[42] V. S. Gerdjikov, A. Saxena, “Complete integrability of nonlocal nonlinear Schrödinger equation”, J. Math. Phys., 58:1 (2017), 013502, 33 pp., arXiv: 1510.0480 | DOI | MR
[43] M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete $\mathcal{PT}$ symmetric model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp. | DOI
[44] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR
[45] F. K. Abdullaev, Y. V. Kartashov, V. V. Konotop, D. A. Zezyulin, “Solitons in PT-symmetric nonlinear lattices”, Phys. Rev. A, 83:4 (2011), 041805, 4 pp., arXiv: 1104.0276 | DOI
[46] I. V. Barashenkov, “Hamiltonian formulation of the standard $\mathcal{PT}$-symmetric nonlinear Schrödinger dimer”, Phys. Rev. A, 90:4 (2014), 045802, 4 pp. | DOI
[47] A. Fring, “$\mathcal{PT}$-symmetric deformations of integrable models”, Philos. Trans. R. Soc. Lond. Ser. A, 371:1989 (2013), 20120046, 18 pp. | DOI | MR
[48] A. A. Zyablovskii, A. P. Vinogradov, A. A. Pukhov, A. V. Dorofeenko, A. A. Lisyanskii, “PT-simmetriya v optike”, UFN, 184:11 (2014), 1177–1198 | DOI | DOI
[49] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 ; C. M. Bender, S. Boettcher, P. N. Meisinger, “$\mathcal{PT}$-Symmetric quantum Mechanics”, J. Math. Phys., 40:5 (1999), 2201–2229, arXiv: quant-ph/9809072 | DOI | MR | DOI | MR
[50] A. Mostafazadeh, “Pseudo-hermiticity versus $\mathcal{PT}$-symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214, arXiv: ; “Pseudo-hermiticity versus $\mathcal{PT}$-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum”, 43:5 (2002), 2814–2816, arXiv: ; “Pseudo-hermiticity versus $\mathcal{PT}$-Symmetry. III: equivalence of pseudo-Hermiticity and the presence of antilinear symmetries”, 3944–3951, arXiv: math-ph/0107001math-ph/0110016math-ph/0203005 | DOI | MR | DOI | DOI
[51] C. M. Bender, “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70:6 (2007), 947–1018, arXiv: hep-th/0703096 | DOI | MR
[52] A. Mostafazadeh, “Pseudo-Hermiticity and generalized $\mathcal{PT}$- and ${\mathcal CPT}$-symmetries”, J. Math. Phys., 44:3 (2003), 974–989, arXiv: math-ph/0209018 | DOI | MR
[53] V. S. Gerdzhikov, G. G. Grakhovski, R. I. Ivanov, “$N$-volnovye uravneniya s $\mathcal{PT}$-simmetriei”, TMF, 188:3 (2016), 397–415 | DOI | MR
[54] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip, “Observation of parity-time symmetry in optics”, Nature Phys., 6 (2010), 192–195 | DOI
[55] V. S. Gerdjikov, G. G. Grahovski, “Multi-component NLS models on symmetric spaces: spectral properties versus representations theory”, SIGMA, 6 (2010), 044, 29 pp., arXiv: 1006.0301 | DOI | MR
[56] V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, “Reductions of $N$-wave interactions related to low-rank simple Lie algebras. I. ${\mathbb Z}_2$-reductions”, J. Phys. A: Math. Gen., 34:44 (2001), 9425–9461, arXiv: nlin.SI/0006001 | DOI | MR
[57] V. S. Gerdjikov, P. P. Kulish, “The generating operator for the $n\times n$ linear system”, Phys. D, 3:3 (1981), 549–564 | DOI | MR
[58] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | DOI | MR
[59] M. J. Ablowitz, X.-D. Luo, Z. H. Musslimani, “Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 59:1 (2018), 011501, 42 pp., arXiv: 1612.02726 | DOI | MR
[60] M. Li, T. Xu, “Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential”, Phys. Rev. E, 91:3 (2015), 033202, 8 pp. | DOI | MR
[61] M. Li, T. Xu, D. Meng, “Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model”, J. Phys. Soc. Japan, 85 (2016), 124001, 9 pp., arXiv: 1503.02254 | DOI
[62] B. Prinari, F. Vitale, “Inverse scattering transform for the focusing Ablowitz–Ladik system with nonzero boundary conditions”, Stud. Appl. Math., 137:1 (2016), 28–52 | DOI | MR
[63] V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, “On integrable wave interactions and Lax pairs on symmetric spaces”, Wave Motion, 71 (2017), 53–70 | DOI | MR
[64] M. Gürses, “Nonlocal Fordy–Kulish equations on symmetric spaces”, Phys. Lett. A, 381:21 (2017), 1791–1794 | DOI | MR