Keywords: conservation law, Kadomtsev–Petviashvili equation.
@article{TMF_2018_197_1_a0,
author = {S. C. Anco and M. L. Gandarias and E. Recio},
title = {Conservation laws, symmetries, and line soliton solutions of generalized {KP} and {Boussinesq} equations with $p$-power nonlinearities in two dimensions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--23},
year = {2018},
volume = {197},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/}
}
TY - JOUR AU - S. C. Anco AU - M. L. Gandarias AU - E. Recio TI - Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 3 EP - 23 VL - 197 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/ LA - ru ID - TMF_2018_197_1_a0 ER -
%0 Journal Article %A S. C. Anco %A M. L. Gandarias %A E. Recio %T Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 3-23 %V 197 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/ %G ru %F TMF_2018_197_1_a0
S. C. Anco; M. L. Gandarias; E. Recio. Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/
[1] M. J. Ablowitz, H. Segur, “On the evolution of packets of water waves”, J. Fluid Mech., 92:4 (1979), 691–715 | DOI | MR
[2] B. B. Kadomtsev, V. I. Petviashvili, “Ob ustoichivosti uedinennykh voln v slabo dispergiruyuschikh sredakh”, Dokl. AN SSSR, 192:4 (1970), 753–756 | Zbl
[3] V. Veerakumar, M. Daniel, “Modified Kadomtsev–Petviashvili (MKP) equation and electromagnetic soliton”, Math. Comput. Simulation, 62:1–2 (2003), 163–169 | DOI | MR
[4] J. Satsuma, “$N$-Soliton solution of the two-dimensional Korteweg–deVries equation”, J. Phys. Soc. Japan, 40:1 (1976), 286–290 | DOI | MR
[5] J. Satsuma, M. J. Ablowitz, “Two-dimensional lumps in nonlinear dispersive systems”, J. Math. Phys., 20:7 (1979), 1496–1503 | DOI | MR
[6] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, V. B. Matveev, “Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction”, Phys. Lett. A, 63:3 (1977), 205–206 | DOI
[7] F. Gesztesy, H. Holden, E. Saab, B. Simon, “Explicit construction of solutions of the modified Kadomtsev–Petviashvili equation”, J. Funct. Anal., 98:1 (1991), 211–228 | DOI | MR
[8] B. G. Konopel'chenko, V. G. Dubrovsky, “Inverse spectral transform for the modified Kadomtsev–Petviashvili equation”, Stud. Appl. Math., 86:3 (1992), 219–268 | DOI | MR
[9] T. Tao, “Why are solitons stable?”, Bull. Amer. Math. Soc. (N. S.), 46:1 (2009), 1–33 | DOI | MR
[10] L. V. Bogdanov, V. E. Zakharov, “The Boussinesq equation revisited”, Phys. D, 165:3–4 (2002), 137–162 | DOI | MR
[11] G. E. Falkovich, M. D. Spector, S. K. Turitsyn, “Destruction of stationary solutions and collapse in the nonlinear string equation”, Phys. Lett. A, 99:6–7 (1983), 271–274 | DOI | MR
[12] R. Naz, Z. Ali, I. Naeem, “Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem”, Abstr. Appl. Anal., 2013 (2013), 340564, 11 pp. | DOI | MR
[13] W. Rui, P. Zhao, Y. Zhang, “Invariant solutions and conservation laws of the $(2+1)$-di- mensional Boussinesq equation”, Abstr. Appl. Anal., 2014:2014 (2014), 840405, 6 pp. | DOI | MR
[14] A. R. Adem, C. M. Khalique, A. Biswas, “Solutions of Kadomtsev–Petviashvili equation with power law nonlinearity in $1+3$ dimensions”, Math. Meth. Appl. Sci., 34:5 (2010), 532–543 | DOI
[15] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | MR | Zbl | Zbl
[16] G. W. Bluman, A. F. Cheviakov, S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168, Springer, New York, 2010 | DOI | MR
[17] S. C. Anco, G. Bluman, “Direct construction method for conservation laws of partial differential equations Part II: General treatment”, Eur. J. Appl. Math., 13:5 (2002), 567–585 | DOI | MR
[18] L. A. Dickey, “On Hamiltonian and Lagrangian formalisms for the KP-hierarchy of integrable equations”, Ann. Acad. Sci. (N. Y.), 491:1 (1987), 131–148 | DOI | MR
[19] S. C. Anco, E. Recio, M. Gandarias, M. Bruzón, “A nonlinear generalization of the Camassa–Holm equation with peakon solutions”, Dynamical Systems, Differential Equations and Applications, Proceedings of the 10th AIMS Conference, eds. M. de Leon, W. Feng, Z. Feng, J. Lopez-Gomez, X. Lu, J. M. Martell, J. Parcet, D. Peralta-Salas, W., AIMS, Madrid, Spain, 2015, 29–37 | DOI | MR
[20] S. Y. Lou, “Symmetries of the Kadomtsev–Petviashvili equation”, J. Phys. A: Math. Gen., 26:17 (1993), 4387–4394 | DOI | MR
[21] S. C. Anco, “Generalization of Noether's theorem in modern form to non-variational partial differential equations”, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Institute Communications, 79, Springer, New York, 2017, 119–182 | DOI | MR
[22] T. Wolf, “A comparison of four approaches to the calculation of conservation laws”, Eur. J. Appl. Math., 13:2 (2002), 129–152 | DOI | MR
[23] S. C. Anco, A. Kara, “Symmetry-invariant conservation laws of partial differential equations”, Eur. J. Appl. Math., 29:1 (2017), 78–117 | DOI
[24] I. S. O'Keir, E. J. Parkes, “The derivation of a modified Kadomtsev–Petviashvili equation and the stability of its solutions”, Phys. Scr., 55:2 (1997), 135–142 | DOI
[25] M. Matsukawa, S. Watanaba, H. Tanaca, “Soliton solutions of generalized 2D Boussinesq equation with quadratic and cubic nonlinearity”, J. Phys. Soc. Japan, 58:3 (1989), 827–830 | DOI | MR