Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 3-23

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear generalizations of integrable equations in one dimension, such as the Korteweg–de Vries and Boussinesq equations with $p$-power nonlinearities, arise in many physical applications and are interesting from the analytic standpoint because of their critical behavior. We study analogous nonlinear $p$-power generalizations of the integrable Kadomtsev–Petviashvili and Boussinesq equations in two dimensions. For all $p\ne0$, we present a Hamiltonian formulation of these two generalized equations. We derive all Lie symmetries including those that exist for special powers $p\ne0$. We use Noether's theorem to obtain conservation laws arising from the variational Lie symmetries. Finally, we obtain explicit line soliton solutions for all powers $p>0$ and discuss some of their properties.
Mots-clés : line soliton
Keywords: conservation law, Kadomtsev–Petviashvili equation.
@article{TMF_2018_197_1_a0,
     author = {S. C. Anco and M. L. Gandarias and E. Recio},
     title = {Conservation laws, symmetries, and line soliton solutions of generalized {KP} and {Boussinesq} equations with $p$-power nonlinearities in two dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {197},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/}
}
TY  - JOUR
AU  - S. C. Anco
AU  - M. L. Gandarias
AU  - E. Recio
TI  - Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 3
EP  - 23
VL  - 197
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/
LA  - ru
ID  - TMF_2018_197_1_a0
ER  - 
%0 Journal Article
%A S. C. Anco
%A M. L. Gandarias
%A E. Recio
%T Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 3-23
%V 197
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/
%G ru
%F TMF_2018_197_1_a0
S. C. Anco; M. L. Gandarias; E. Recio. Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/