Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 3-23
Voir la notice de l'article provenant de la source Math-Net.Ru
Nonlinear generalizations of integrable equations in one dimension, such as the Korteweg–de Vries and Boussinesq equations with $p$-power nonlinearities, arise in many physical applications and are interesting from the analytic standpoint because of their critical behavior. We study analogous nonlinear $p$-power generalizations of the integrable Kadomtsev–Petviashvili and Boussinesq equations in two dimensions. For all $p\ne0$, we present a Hamiltonian formulation of these two generalized equations. We derive all Lie symmetries including those that exist for special powers $p\ne0$. We use Noether's theorem to obtain conservation laws arising from the variational Lie symmetries. Finally, we obtain explicit line soliton solutions for all powers $p>0$ and discuss some of their properties.
Mots-clés :
line soliton
Keywords: conservation law, Kadomtsev–Petviashvili equation.
Keywords: conservation law, Kadomtsev–Petviashvili equation.
@article{TMF_2018_197_1_a0,
author = {S. C. Anco and M. L. Gandarias and E. Recio},
title = {Conservation laws, symmetries, and line soliton solutions of generalized {KP} and {Boussinesq} equations with $p$-power nonlinearities in two dimensions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--23},
publisher = {mathdoc},
volume = {197},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/}
}
TY - JOUR AU - S. C. Anco AU - M. L. Gandarias AU - E. Recio TI - Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 3 EP - 23 VL - 197 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/ LA - ru ID - TMF_2018_197_1_a0 ER -
%0 Journal Article %A S. C. Anco %A M. L. Gandarias %A E. Recio %T Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 3-23 %V 197 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/ %G ru %F TMF_2018_197_1_a0
S. C. Anco; M. L. Gandarias; E. Recio. Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/TMF_2018_197_1_a0/