Construction of exact solutions for equilibrium configurations of the boundary of a conducting liquid deformed by an external electric field
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 503-516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a two-dimensional plane-symmetric formulation, we consider the problem of the equilibrium configurations of the free surface of a conducting capillary liquid placed in an external electric field. We find a one-parameter family of exact solutions of the problem according to which the fluid takes the shape of a blade. Such a configuration provides formally unlimited local field amplification: the field strength is maximum at the edge of the blade and drops to zero at the periphery. For a given potential difference between the liquid and the flat electrode located above it, we find threshold values of the electric field strength at the edge of the liquid blade, the radius of curvature of the edge, and the distance from the edge to the electrode limiting the region of existence of the solutions.
Mots-clés : equilibrium configuration, exact solution, surface tension
Keywords: free surface, conductive fluid, electrostatic force, conformal map method.
@article{TMF_2018_196_3_a9,
     author = {N. M. Zubarev and O. V. Zubareva},
     title = {Construction of exact solutions for equilibrium configurations of the~boundary of a~conducting liquid deformed by an~external electric field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {503--516},
     year = {2018},
     volume = {196},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a9/}
}
TY  - JOUR
AU  - N. M. Zubarev
AU  - O. V. Zubareva
TI  - Construction of exact solutions for equilibrium configurations of the boundary of a conducting liquid deformed by an external electric field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 503
EP  - 516
VL  - 196
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a9/
LA  - ru
ID  - TMF_2018_196_3_a9
ER  - 
%0 Journal Article
%A N. M. Zubarev
%A O. V. Zubareva
%T Construction of exact solutions for equilibrium configurations of the boundary of a conducting liquid deformed by an external electric field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 503-516
%V 196
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a9/
%G ru
%F TMF_2018_196_3_a9
N. M. Zubarev; O. V. Zubareva. Construction of exact solutions for equilibrium configurations of the boundary of a conducting liquid deformed by an external electric field. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 503-516. http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a9/

[1] L. Tonks, “A theory of liquid surface rupture by a uniform electric field”, Phys. Rev., 48:6 (1935), 562–568 | DOI

[2] Ya. I. Frenkel, “K teorii Tonksa o razryve poverkhnosti zhidkosti postoyannym elektricheskim polem v vakuume”, ZhETF, 6:4 (1936), 348–350 | Zbl

[3] J. R. Melcher, Field-Coupled Surface Waves, MIT Press, Cambridge, 1963

[4] E. A. Kuznetsov, M. D. Spektor, “O suschestvovanii geksagonalnogo relefa na poverkhnosti zhidkogo dielektrika vo vneshnem elektricheskom pole”, ZhETF, 71:1 (1976), 262–272

[5] N. M. Zubarev, O. V. Zubareva, “Dinamika svobodnoi poverkhnosti provodyaschei zhidkosti v okolokriticheskom elektricheskom pole”, ZhTF, 71:7 (2001), 21–29 | DOI

[6] M. D. Gabovich, “Zhidkometallicheskie emittery ionov”, UFN, 140:1 (1983), 137–151 | DOI | DOI

[7] A. I. Zhakin, “Elektrogidrodinamika zaryazhennykh poverkhnostei”, UFN, 183:2 (2013), 153–177 | DOI | DOI

[8] N. M. Zubarev, “Formation of root singularities on the free surface of a conducting fluid in an electric field”, Phys. Lett. A, 243:3 (1998), 128–131 | DOI

[9] L. M. Baskin, A. V. Batrakov, S. A. Popov, D. I. Proskurovsky, “Electrohydrodynamic phenomena on the explosive-emission liquid-metal cathode”, IEEE Trans. Dielectr. Electr. Insul., 2:2 (1995), 231–236 | DOI

[10] W. Driesel, C. Dietzsch, R. Mühle, “In situ observation of the tip shape of AuGe liquid alloy ion sources using a high voltage transmission electron microscope”, J. Vac. Sci. Technol. B, 14:5 (1996), 3367–380 | DOI

[11] N. M. Zubarev, “Formirovanie konicheskikh ostrii na poverkhnosti zhidkogo metalla v elektricheskom pole”, Pisma v ZhETF, 73:10 (2001), 613–617 | DOI

[12] V. B. Shikin, “Neustoichivost i perestroiki zaryazhennoi poverkhnosti zhidkosti”, UFN, 181:12 (2011), 1241–1264 | DOI | DOI

[13] A. A. Levchenko, G. V. Kolmakov, L. P. Mezhov-Deglin, M. G. Mikhailov, A. B. Trusov, “Staticheskie yavleniya na zaryazhennoi poverkhnosti zhidkogo vodoroda”, FNT, 25:4 (1999), 333–342 | DOI

[14] J. W. S. Rayleigh, “XX. On the equilibrium of liquid conducting masses charged with electricity”, Philos. Mag., 14 (1882), 184–186 | DOI

[15] M. J. Miksis, “Shape of a drop in an electric field”, Phys. Fluids, 24:11 (1981), 1967–1972 | DOI | Zbl

[16] N. A. Pelekasis, J. A. Tsamopoulos, G. D. Manolis, “Equilibrium shapes and stability of charged and conducting drops”, Phys. Fluids A, 2:8 (1990), 1328–1340 | DOI | MR | Zbl

[17] N. M. Zubarev, O. V. Zubareva, “Equilibrium configurations of uncharged conducting liquid jets in a transverse electric field”, Phys. A, 385:1 (2007), 35–45 | DOI

[18] G. I. Taylor, “Disintegration of water drops in an electric field”, Proc. Roy. Soc. London Ser. A, 280:1382 (1964), 383–397 | DOI | Zbl

[19] N. M. Zubarev, “Tochnoe reshenie zadachi o ravnovesnoi konfiguratsii zaryazhennoi poverkhnosti zhidkogo metalla”, ZhETF, 116:6 (1999), 1990–2005

[20] N. M. Zubarev, “K probleme suschestvovaniya singulyarnogo statsionarnogo profilya zaryazhennoi poverkhnosti provodyaschei zhidkosti”, Pisma v ZhTF, 27:6 (2001), 1–6 | DOI

[21] M. I. Gurevich, Teoriya strui idealnoi zhidkosti, Nauka, M., 1979 | MR

[22] G. D. Crapper, “An exact solution for progressive capillary waves of arbitrary amplitude”, J. Fluid Mech., 2:6 (1957), 532–540 | DOI | MR | Zbl

[23] N. M. Zubarev, O. V. Zubareva, P. K. Ivanov, “Tochnye resheniya dlya ravnovesnykh konfiguratsii poverkhnosti provodyaschei zhidkosti v elektricheskom pole zaryazhennoi pryamoi niti”, Pisma v ZhTF, 35:20 (2009), 84–88 | DOI

[24] N. B. Volkov, N. M. Zubarev, O. V. Zubareva, “Tochnye resheniya zadachi o forme nezaryazhennoi strui provodyaschei zhidkosti v poperechnom elektricheskom pole”, ZhETF, 149:5 (2016), 1096–1101 | DOI | DOI

[25] J. A. Shercliff, “Magnetic shaping of molten metal columns”, Proc. Roy. Soc. London Ser. A, 375:1763 (1981), 455–473 | DOI

[26] W. Kinnersley, “Exact large amplitude capillary waves on sheets of fluid”, J. Fluid Mech., 77:2 (1976), 229–241 | DOI | MR | Zbl

[27] M. G. Blyth, J.-M. Vanden-Broeck, “Magnetic shaping of a liquid metal Column and deformation of a bubble in a vortex flow”, SIAM J. Appl. Math., 66:1 (2005), 174–186 | DOI | MR | Zbl