Haantjes algebras of the Lagrange top
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 487-502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a symplectic–Haantjes manifold and a Poisson–Haantjes manifold for the Lagrange top and compute a set of Darboux–Haantjes coordinates. Such coordinates are separation variables for the associated Hamilton–Jacobi equation.
Mots-clés : Haantjes algebra, Lagrange top.
@article{TMF_2018_196_3_a8,
     author = {G. Tondo},
     title = {Haantjes algebras of {the~Lagrange} top},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {487--502},
     year = {2018},
     volume = {196},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a8/}
}
TY  - JOUR
AU  - G. Tondo
TI  - Haantjes algebras of the Lagrange top
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 487
EP  - 502
VL  - 196
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a8/
LA  - ru
ID  - TMF_2018_196_3_a8
ER  - 
%0 Journal Article
%A G. Tondo
%T Haantjes algebras of the Lagrange top
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 487-502
%V 196
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a8/
%G ru
%F TMF_2018_196_3_a8
G. Tondo. Haantjes algebras of the Lagrange top. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 487-502. http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a8/

[1] P. Tempesta, G. Tondo, “Haantjes algebras and diagonalization”, arXiv: 1710.04522

[2] P. Tempesta, G. Tondo, “Haantjes manifolds of classical integrable systems”, arXiv: 1405.5118

[3] I. M. Gelfand, I. Zakharevich, “Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures”, Selecta Math. (N. S.), 6:2 (2000), 131–183 | DOI | MR | Zbl

[4] F. Magri, C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson–Nijenhuis manifolds, Quaderno S19, Università di Milano, Milano, 1984

[5] Y. Kosmann-Schwarzbach, F. Magri, “Poisson–Nijenhuis structures”, Ann. Inst. H. Poincarè Phys. Théor., 53:1 (1990), 35–81 | MR | Zbl

[6] F. Magri, “Recursion operators and Frobenius manifolds”, SIGMA, 8 (2012), 076, 7 pp., arXiv: 1210.5320 | DOI | MR | Zbl

[7] F. Magri, “Haantjes manifolds”, J. Phys. Conf. Ser., 482:1 (2014), 012028, 10 pp. | DOI

[8] F. Magri, “WDVV equations”, Nuovo Cimento C, 38 (2015), 166, 10 pp., arXiv: 1510.07950 | DOI

[9] F. Magri, “Mnogoobraziya Khaantesa i sistemy Veselova”, TMF, 189:1 (2016), 101–114 | DOI | DOI | MR

[10] J. Haantjes, “On $X_{m}$-forming sets of eigenvectors”, Indag. Math., 17 (1955), 158–162 | DOI | MR

[11] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 54 (1951), 200–212 | DOI | MR | Zbl

[12] A. Nijenhuis, “Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, II”, Indag. Math, 17 (1955), 390–397, 398–403 | DOI | MR

[13] A. Frolicher, A. Nijenhuis, “Theory of vector-valued differential forms. I”, Indag. Math., 18 (1956), 338–359 | DOI | MR

[14] Y. Kosmann-Schwarzbach, Beyond recursion operators, arXiv: 1712.08908

[15] O. I. Bogoyavlenskii, “Obschie algebraicheskie tozhdestva dlya tenzorov Niienkheisa i Khaantzhesa”, Izv. RAN. Ser. matem., 68:6 (2004), 71–84 | DOI | DOI | MR | Zbl

[16] C. Morosi, G. Tondo, “The quasi-bi-Hamiltonian formulation of the Lagrange top”, J. Phys. A: Math. Gen., 35:7 (2002), 1741–1750 | DOI | MR | Zbl

[17] K. Morozi, D. Tondo, “Razdelenie peremennykh v multigamiltonovykh sistemakh. Primenenie k lagranzhevu volchku”, TMF, 137:2 (2003), 226–238 | DOI | DOI | MR | Zbl

[18] A. V. Tsiganov, “On bi-Hamiltonian geometry of the Lagrange top”, J. Phys. A: Math. Theor., 41:31 (2008), 315212, 12 pp. | DOI | MR | Zbl

[19] G. Falqui, M. Pedroni, “On a Poisson reduction for Gelfand–Zakharevich manifolds”, Rep. Math. Phys., 50:3 (2002), 395–407 | DOI | MR | Zbl

[20] J. E. Marsden, T. Ratiu, “Reduction of Poisson manifolds”, Lett. Math. Phys., 11:2 (1986), 161–169 | DOI | MR | Zbl

[21] S. Benenti, “Inertia tensors and Stäckel systems in the Euclidean spaces”, Rend. Sem. Mat. Univ. Politec. Torino, 50:4 (1992), 315–341 | MR | Zbl

[22] S. Benenti, “Orthogonal separable dynamical systems”, Differential Geometry and Its Applications, Proceedings of the 5th International Conference (Opava, Czechoslovakia, August 24–28, 1992), Mathematical Publications (Opava), 1, eds. O. Kowalski, D. Krupka, Silesian Univ., Opava, 1993, 163–184 | MR | Zbl

[23] S. Benenti, “Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems”, Acta Appl. Math., 87:1–3 (2005), 33–91 | DOI | MR | Zbl

[24] C. Morosi, G. Tondo, “Quasi-bi-Hamiltonian systems and separability”, J. Phys. A: Math. Gen., 30:8 (1997), 2799–2806 | DOI | MR | Zbl

[25] C. Morosi, G. Tondo, “On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian”, Phys. Lett. A, 247:1–2 (1998), 59–64 | DOI | MR | Zbl

[26] G. Tondo, C. Morosi, “Bi-Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables”, Rep. Math. Phys., 44:1–2 (1999), 255–266 | DOI | MR | Zbl

[27] G. Tondo, P. Tempesta, “Haantjes structures for the Jacobi–Calogero model and the Benenti systems”, SIGMA, 12 (2016), 023, 18 pp., arXiv: 1511.00234 | DOI | MR | Zbl

[28] G. Falqui, M. Pedroni, “Separation of variables for bi-Hamiltonian systems”, Math. Phys. Anal. Geom., 6:2 (2003), 139–179 | DOI | MR | Zbl

[29] S. Benenti, “Separability structures on Riemannian manifolds”, Differential Geometrical Methods in Mathematical Physics (Aix-en-Provence, September 3–7, 1979; Salamanca, September 10–14, 1979), Lecture Notes in Mathematics, 836, eds. P. L. Garcia, A. Perez-Rendon, J. M. Souriau, Springer, Berlin, 1980, 512–538 | MR | Zbl

[30] G. Falki, F. Magri, G. Tondo, “Reduktsiya bigamiltonovykh sistem i razdelenie peremennykh: primer iz ierarkhii Bussineska”, TMF, 122:2 (2000), 212–230 | DOI | DOI | MR | Zbl