Mots-clés : superposition principle, soliton
@article{TMF_2018_196_3_a6,
author = {A. G. Rasin and J. Schiff},
title = {Unfamiliar aspects of {B\"acklund} transformations and an~associated {Degasperis{\textendash}Procesi} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {449--464},
year = {2018},
volume = {196},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a6/}
}
TY - JOUR AU - A. G. Rasin AU - J. Schiff TI - Unfamiliar aspects of Bäcklund transformations and an associated Degasperis–Procesi equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 449 EP - 464 VL - 196 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a6/ LA - ru ID - TMF_2018_196_3_a6 ER -
A. G. Rasin; J. Schiff. Unfamiliar aspects of Bäcklund transformations and an associated Degasperis–Procesi equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 449-464. http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a6/
[1] A. G. Rasin, J. Schiff, “The Gardner method for symmetries”, J. Phys. A: Math. Theor., 46:15 (2013), 155202, 15 pp. | DOI | MR
[2] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR
[3] P. J. Olver, “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18:6 (1977), 1212–1215 | DOI | MR
[4] S. Kumei, “Invariance transformations, invariance group transformations, and invariance groups of the sine-Gordon equations”, J. Math. Phys., 16:12 (1975), 2461–2468 | DOI | MR
[5] A. G. Rasin, J. Schiff, “Bäcklund transformations for the Camassa–Holm equation”, J. Nonlin. Sci., 27:1 (2017), 45–69 | DOI | MR
[6] J. Schiff, “The Camassa–Holm equation: a loop group approach”, Phys. D, 121:1–2 (1998), 24–43 | DOI | MR
[7] A. G. Rasin, J. Schiff, “Bäcklund transformations for the Boussinesq equation and merging solitons”, J. Phys. A: Math. Theor., 50:32 (2017), 325202, 21 pp. | DOI | MR
[8] A. Degasperis, D. D. Kholm, A. Khon, “Novoe integriruemoe uravnenie s pikonnymi resheniyami”, TMF, 133:2 (2002), 170–183 | DOI | DOI | MR
[9] V. E. Adler, A. B. Shabat, “Toward a theory of integrable hyperbolic equations of third order”, J. Phys. A: Math. Theor., 45:39 (2012), 395207, 17 pp. | DOI | MR
[10] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, 1998), eds. A. Degasperis, G. Gaeta, World Sci., Singapore, 1999, 23–37 | DOI | MR
[11] H. R. Dullin, G. A. Gottwald, D. D. Holm, “Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves”, Fluid Dynam. Res., 33:1–2 (2003), 73–95 | DOI | MR
[12] D. D. Holm, M. F. Staley, “Nonlinear balance and exchange of stability of dynamics of solitons, peakons, ramps/cliffs and leftons in a $1+1$ nonlinear evolutionary PDE”, Phys. Lett. A, 308:5–6 (2003), 437–444 | DOI | MR
[13] D. D. Holm, M. F. Staley, “Wave structure and nonlinear balances in a family of evolutionary PDEs”, SIAM J. Appl. Dyn. Syst., 2:3 (2003), 323–380 | DOI | MR
[14] A. N. W. Hone, J. P. Wang, “Prolongation algebras and Hamiltonian operators for peakon equations”, Inverse Problems, 19:1 (2003), 129–145 | DOI | MR
[15] M. C. Nucci, “Painlevé property and pseudopotentials for nonlinear evolution equations”, J. Phys. A: Math. Gen., 22:15 (1989), 2897–2914 | DOI | MR
[16] J. Kang, X. Liu, P. J. Olver, C. Qu, “Liouville correspondences between integrable hierarchies”, SIGMA, 13 (2017), 035, 26 pp. | DOI | MR
[17] H. Lundmark, J. Szmigielski, “Multi-peakon solutions of the Degasperis–Procesi equation”, Inverse Problems, 19:6 (2003), 1241–1245 | DOI | MR
[18] V. O. Vakhnenko, E. J. Parkes, “Periodic and solitary-wave solutions of the Degasperis–Procesi equation”, Chaos Solitons Fractals, 20:5 (2004), 1059–1073 | DOI | MR
[19] J. Lenells, “Traveling wave solutions of the Degasperis–Procesi equation”, J. Math. Anal. Appl., 306:1 (2005), 72–82 | DOI | MR
[20] Y. Matsuno, “Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit”, Inverse Problems, 21:5 (2005), 1553–1570 | DOI | MR
[21] Y. Matsuno, “The $N$-soliton solution of the Degasperis–Procesi equation”, Inverse Problems, 21:6 (2005), 2085–2101 | DOI | MR
[22] B.-F. Feng, K.-I. Maruno, Y. Ohta, “On the $\tau$-functions of the Degasperis–Procesi equation”, J. Phys. A: Math. Theor., 46:4 (2013), 045205, 25 pp. | DOI | MR
[23] B.-F. Feng, K.-I. Maruno, Y. Ohta, “An integrable semi-discrete Degasperis–Procesi equation”, Nonlinearity, 30:6 (2017), 2246–2267 | DOI | MR
[24] S. Stalin, M. Senthilvelan, “Multi-loop soliton solutions and their interaction in the Degasperis–Procesi equation”, Phys. Scr., 86:1 (2012), 015006, arXiv: 1207.4634 | DOI
[25] A. B. Shabat, V. E. Adler, V. G. Marikhin, A. A. Mikhailov, V. V. Sokolov (red.), Entsiklopediya integriruemykh sistem, ITF, M., 2009
[26] A. P. Fordy, J. Gibbons, “Some remarkable nonlinear transformations”, Phys. Lett. A, 75:5 (1980), 325 | DOI | MR
[27] A. P. Fordy, J. Gibbons, “Factorization of operators. I. Miura transformations”, J. Math. Phys., 21:10 (1980), 2508–2510 | DOI | MR
[28] A. P. Fordy, J. Gibbons, “Factorization of operators. II”, J. Math. Phys., 22:6 (1981), 1170–1175 | DOI | MR
[29] V. Novikov, “Generalizations of the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42:34 (2009), 342002, 14 pp. | DOI | MR
[30] A. N. W. Hone, J. P. Wang, “Integrable peakon equations with cubic nonlinearity”, J. Phys. A: Math. Theor., 41:37 (2008), 372002, 10 pp. | DOI | MR
[31] W. Fu, F. Nijhoff, “On reductions of the discrete Kadomtsev–Petviashvili-type equations”, J. Phys. A: Math. Theor., 50:50 (2017), 505203, arXiv: 1705.04819 | DOI