Conformally invariant elliptic Liouville equation and its symmetry-preserving discretization
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 419-433
Cet article a éte moissonné depuis la source Math-Net.Ru
The symmetry algebra of the real elliptic Liouville equation is an infinite-dimensional loop algebra with the simple Lie algebra $o(3,1)$ as its maximal finite-dimensional subalgebra. The entire algebra generates the conformal group of the Euclidean plane $E_2$. This infinite-dimensional algebra distinguishes the elliptic Liouville equation from the hyperbolic one with its symmetry algebra that is the direct sum of two Virasoro algebras. Following a previously developed discretization procedure, we present a difference scheme that is invariant under the group $O(3,1)$ and has the elliptic Liouville equation in polar coordinates as its continuous limit. The lattice is a solution of an equation invariant under $O(3,1)$ and is itself invariant under a subgroup of $O(3,1)$, namely, the $O(2)$ rotations of the Euclidean plane.
Mots-clés :
Lie group
Keywords: partial differential equation, discretization procedure.
Keywords: partial differential equation, discretization procedure.
@article{TMF_2018_196_3_a4,
author = {D. Levi and L. Martina and P. Winternitz},
title = {Conformally invariant elliptic {Liouville} equation and its symmetry-preserving discretization},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {419--433},
year = {2018},
volume = {196},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a4/}
}
TY - JOUR AU - D. Levi AU - L. Martina AU - P. Winternitz TI - Conformally invariant elliptic Liouville equation and its symmetry-preserving discretization JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 419 EP - 433 VL - 196 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a4/ LA - ru ID - TMF_2018_196_3_a4 ER -
%0 Journal Article %A D. Levi %A L. Martina %A P. Winternitz %T Conformally invariant elliptic Liouville equation and its symmetry-preserving discretization %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 419-433 %V 196 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a4/ %G ru %F TMF_2018_196_3_a4
D. Levi; L. Martina; P. Winternitz. Conformally invariant elliptic Liouville equation and its symmetry-preserving discretization. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 419-433. http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a4/