Chiral trace relations in $\mathcal N=2^*$ supersymmetric gauge theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 390-403

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze the chiral ring in $\Omega$-deformed $\mathcal N=2^*$ supersymmetric gauge theories. Applying localization techniques, we derive closed identities for the vacuum expectation values of chiral trace operators. In the $SU(2)$ case, we provide an AGT framework to identify chiral trace operators and the system of local integrals of motion in the related two-dimensional conformal field theory. In this setup, we predict some universal terms appearing in chiral trace identities.
Keywords: supersymmetric gauge theory, integrability.
Mots-clés : nonperturbative effect
@article{TMF_2018_196_3_a2,
     author = {A. Fachechi and G. Macorini and M. Beccaria},
     title = {Chiral trace relations in $\mathcal N=2^*$ supersymmetric gauge theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {390--403},
     publisher = {mathdoc},
     volume = {196},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a2/}
}
TY  - JOUR
AU  - A. Fachechi
AU  - G. Macorini
AU  - M. Beccaria
TI  - Chiral trace relations in $\mathcal N=2^*$ supersymmetric gauge theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 390
EP  - 403
VL  - 196
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a2/
LA  - ru
ID  - TMF_2018_196_3_a2
ER  - 
%0 Journal Article
%A A. Fachechi
%A G. Macorini
%A M. Beccaria
%T Chiral trace relations in $\mathcal N=2^*$ supersymmetric gauge theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 390-403
%V 196
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a2/
%G ru
%F TMF_2018_196_3_a2
A. Fachechi; G. Macorini; M. Beccaria. Chiral trace relations in $\mathcal N=2^*$ supersymmetric gauge theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 390-403. http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a2/