Chiral trace relations in $\mathcal N=2^*$ supersymmetric gauge theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 390-403
Voir la notice de l'article provenant de la source Math-Net.Ru
We analyze the chiral ring in $\Omega$-deformed $\mathcal N=2^*$ supersymmetric gauge theories. Applying localization techniques, we derive closed identities for the vacuum expectation values of chiral trace operators. In the $SU(2)$ case, we provide an AGT framework to identify chiral trace operators and the system of local integrals of motion in the related two-dimensional conformal field theory. In this setup, we predict some universal terms appearing in chiral trace identities.
Keywords:
supersymmetric gauge theory, integrability.
Mots-clés : nonperturbative effect
Mots-clés : nonperturbative effect
@article{TMF_2018_196_3_a2,
author = {A. Fachechi and G. Macorini and M. Beccaria},
title = {Chiral trace relations in $\mathcal N=2^*$ supersymmetric gauge theories},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {390--403},
publisher = {mathdoc},
volume = {196},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a2/}
}
TY - JOUR AU - A. Fachechi AU - G. Macorini AU - M. Beccaria TI - Chiral trace relations in $\mathcal N=2^*$ supersymmetric gauge theories JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 390 EP - 403 VL - 196 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a2/ LA - ru ID - TMF_2018_196_3_a2 ER -
%0 Journal Article %A A. Fachechi %A G. Macorini %A M. Beccaria %T Chiral trace relations in $\mathcal N=2^*$ supersymmetric gauge theories %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 390-403 %V 196 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a2/ %G ru %F TMF_2018_196_3_a2
A. Fachechi; G. Macorini; M. Beccaria. Chiral trace relations in $\mathcal N=2^*$ supersymmetric gauge theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 390-403. http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a2/