Ermakov–Pinney and Emden–Fowler equations: New solutions from novel Bäcklund transformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 373-389
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the class of nonlinear ordinary differential equations $y''y= F(z,y^2)$, where $F$ is a smooth function. Various ordinary differential equations with a well-known importance for applications belong to this class of nonlinear ordinary differential equations. Indeed, the Emden–Fowler equation, the Ermakov–Pinney equation, and the generalized Ermakov equations are among them. We construct Bäcklund transformations and auto-Bäcklund transformations: starting from a trivial solution, these last transformations induce the construction of a ladder of new solutions admitted by the given differential equations. Notably, the highly nonlinear structure of this class of nonlinear ordinary differential equations implies that numerical methods are very difficult to apply.
Keywords:
nonlinear ordinary differential equation, Bäcklund transformation, Schwarzian derivative, Ermakov–Pinney equation, Emden–Fowler equation.
@article{TMF_2018_196_3_a1,
author = {S. Carillo and F. Zullo},
title = {Ermakov{\textendash}Pinney and {Emden{\textendash}Fowler} equations: {New} solutions from novel {B\"acklund} transformations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {373--389},
year = {2018},
volume = {196},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a1/}
}
TY - JOUR AU - S. Carillo AU - F. Zullo TI - Ermakov–Pinney and Emden–Fowler equations: New solutions from novel Bäcklund transformations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 373 EP - 389 VL - 196 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a1/ LA - ru ID - TMF_2018_196_3_a1 ER -
S. Carillo; F. Zullo. Ermakov–Pinney and Emden–Fowler equations: New solutions from novel Bäcklund transformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 3, pp. 373-389. http://geodesic.mathdoc.fr/item/TMF_2018_196_3_a1/