On integrable non–autonomous Liénard–type equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 328-340 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a family of nonautonomous generalized Liénard-type equations. We consider the equivalence problem via the generalized Sundman transformations between this family of equations and type-I Painlevé–Gambier equations. As a result, we find four criteria of equivalence, which give four integrable families of Liénard-type equations. We demonstrate that these criteria can be used to construct general traveling-wave and stationary solutions of certain classes of diffusion–convection equations. We also illustrate our results with several other examples of integrable nonautonomous Liénard-type equations.
Mots-clés : Liénard-type equation, nonlocal transformation, Painlevé–Gambier equation.
Keywords: general solution
@article{TMF_2018_196_2_a8,
     author = {D. I. Sinelshchikov and N. A. Kudryashov},
     title = {On integrable non{\textendash}autonomous {Li\'enard{\textendash}type} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {328--340},
     year = {2018},
     volume = {196},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a8/}
}
TY  - JOUR
AU  - D. I. Sinelshchikov
AU  - N. A. Kudryashov
TI  - On integrable non–autonomous Liénard–type equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 328
EP  - 340
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a8/
LA  - ru
ID  - TMF_2018_196_2_a8
ER  - 
%0 Journal Article
%A D. I. Sinelshchikov
%A N. A. Kudryashov
%T On integrable non–autonomous Liénard–type equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 328-340
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a8/
%G ru
%F TMF_2018_196_2_a8
D. I. Sinelshchikov; N. A. Kudryashov. On integrable non–autonomous Liénard–type equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 328-340. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a8/

[1] A. Liénard, “Étude des oscillations entretenues”, Rev. Gen. Elec., 23 (1928), 901–912

[2] A. K. Tiwari, S. N. Pandey, M. Senthilvelan, M. Lakshmanan, “Classification of Lie point symmetries for quadratic Liénard type equation $\ddot x+f(x)\dot x^2+g(x)=0$”, J. Math. Phys., 54:5 (2013), 053506, 19 pp. | DOI | MR | Zbl

[3] A. A. Andronov, A. A. Vitt, S. E. Khaikin, Teoriya kolebanii, Nauka, M., 1981 | MR | MR

[4] A. D. Polyanin, V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman and Hall/CRC, Boca Raton, FL, 2002 | MR

[5] L. G. S. Duarte, S. E. S. Duarte, L. A. C. P. da Mota, J. E. F. Skea, “Solving second-order ordinary differential equations by extending the Prelle–Singer method”, J. Phys. A.: Math. Gen., 34:14 (2001), 3015–3024 | DOI | MR | Zbl

[6] M. C. Nucci, P. G. L. Leach, “An old method of Jacobi to find Lagrangians”, J. Nonlinear Math. Phys., 16:4 (2009), 431–441, arXiv: 0807.2796 | DOI | MR | Zbl

[7] G. D'Ambrosi, M. C. Nucci, “Lagrangians for equations of Painlevé type by means of the Jacobi last multiplier”, J. Nonlinear Math. Phys., 16, suppl. 1 (2009), 61–71 | DOI | MR | Zbl

[8] M. K. Nuchchi, “Kak iskat (i nakhodit) lagranzhiany”, TMF, 160:1 (2009), 168–177 | DOI | DOI | MR | Zbl

[9] M. C. Nucci, K. M. Tamizhmani, “Lagrangians for dissipative nonlinear oscillators: the method of Jacobi last multiplier”, J. Nonlinear Math. Phys., 17:2 (2010), 167–178 | DOI | MR | Zbl

[10] S. N. Pandey, P. S. Bindu, M. Senthilvelan, M. Lakshmanan, “A group theoretical identification of integrable cases of the Liénard-type equation $\ddot x+f(x)\dot x+g(x)=0$. I. Equations having nonmaximal number of Lie point symmetries”, J. Math. Phys., 50:8 (2009), 082702, 19 pp. | DOI | MR | Zbl

[11] S. N. Pandey, P. S. Bindu, M. Senthilvelan, M. Lakshmanan, “A group theoretical identification of integrable equations in the Liénard-type equation $\ddot{x}+f(x)\dot{x}+g(x)=0$. II. Equations having maximal Lie point symmetries”, J. Math. Phys., 50:10 (2009), 102701, 25 pp. | DOI | MR | Zbl

[12] L. G. S. Duarte, I. C. Moreira, F. C. Santos, “Linearization under nonpoint transformations”, J. Phys. A.: Math. Gen., 27:19 (1994), L739–L743 | DOI | MR | Zbl

[13] W. Nakpim, S. V. Meleshko, “Linearization of second-order ordinary differential equations by generalized Sundman transformations”, SIGMA, 6 (2010), 051, 11 pp. | DOI | MR

[14] S. Moyo, S. V. Meleshko, “Application of the generalised Sundman transformation to the linearisation of two second-order ordinary differential equations”, J. Nonlinear Math. Phys., 18, suppl. 1 (2011), 213–236 | DOI | MR | Zbl

[15] N. Euler, M. Euler, “Sundman symmetries of nonlinear second-order and third-order ordinary differential equations”, J. Nonlinear Math. Phys., 11:3 (2004), 399–421 | DOI | MR | Zbl

[16] N. Euler, M. Euler, “An alternate view on symmetries of second-order linearisable ordinary differential equations”, Lobachevskii J. Math., 33:2 (2012), 191–194 | DOI | MR | Zbl

[17] N. A. Kudryashov, D. I. Sinelshchikov, “On the criteria for integrability of the Liénard equation”, Appl. Math. Lett., 57 (2016), 114–120 | DOI | MR | Zbl

[18] N. A. Kudryashov, D. I. Sinelshchikov, “On the integrability conditions for a family of Liénard-type equations”, Regul. Chaotic Dyn., 21:5 (2016), 548–555, arXiv: 1608.06920 | DOI | MR | Zbl

[19] N. A. Kudryashov, D. I. Sinelshchikov, “On connections of the Liénard equation with some equations of Painlevé–Gambier type”, J. Math. Anal. Appl., 449:2 (2017), 1570–1580 | DOI | MR | Zbl

[20] D. I. Sinelshchikov, “On connections of the Liénard-type equations with type II Painlevé–Gambier equations”, AIP Conf. Proc., 1863:1 (2017), 380008 | DOI

[21] E. L. Ains, Obyknovennye differentsialnye uravneniya, Nauchno-tekhn. izd-vo Ukrainy, Kharkov, 1939 | Zbl