Haantjes manifolds with symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 313-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the definition of Haantjes manifolds with symmetry and explain why these manifolds appear in the theory of integrable systems of hydrodynamic type and in topological field theories.
Keywords: integrable system, WDVV equation, flat Riemannian metric.
@article{TMF_2018_196_2_a7,
     author = {F. Magri},
     title = {Haantjes manifolds with symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {313--327},
     year = {2018},
     volume = {196},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a7/}
}
TY  - JOUR
AU  - F. Magri
TI  - Haantjes manifolds with symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 313
EP  - 327
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a7/
LA  - ru
ID  - TMF_2018_196_2_a7
ER  - 
%0 Journal Article
%A F. Magri
%T Haantjes manifolds with symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 313-327
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a7/
%G ru
%F TMF_2018_196_2_a7
F. Magri. Haantjes manifolds with symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 313-327. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a7/

[1] K. Yano, M. Ako, “On certain operators associated with tensor fields”, Kodai Math. Sem. Rep., 20:4 (1968), 414–436 | DOI | MR | Zbl

[2] I. M. Krichever, “The $\tau$-function of the universal Whitham hierarcy, matrix models and topological fields theories”, Commun. Pure Appl. Math., 47:4 (1994), 437–475 | DOI | MR | Zbl

[3] B. G. Konopelchenko, F. Magri, “Coisotropic deformations of associative algebras and dispersionless integrable hierarchies”, Commun. Math. Phys., 274:3 (2007), 627–658, arXiv: nlin/0606069 | DOI | MR | Zbl

[4] E. Witten, “On the structure of topological phase of two-dimensional gravity”, Nucl. Phys. B, 340:2–3 (1990), 281–332 | DOI | MR

[5] R. Dijkgraaf, H. Verlinde, E. Verlinde, “Topological strings in $d1$”, Nucl. Phys. B, 352:1 (1991), 59–86 | DOI | MR

[6] B. Dubrovin, “Integrable systems in topological field theory”, Nucl. Phys. B, 379:3 (1992), 627–689 | DOI | MR

[7] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, Italy, June 14–22, 1995), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[8] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Cer. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl

[9] A. Frölicher, A. Nijenhuis, “Theory of vector-valued differential forms. I. Derivations of the graded ring of differential forms”, Indag. Math., 18 (1956), 338–359 | DOI | MR | Zbl

[10] J. Haantjes, “On $X_m$-forming sets of eigenvectors”, Indag. Math., 17 (1955), 158–162 | DOI | MR

[11] F. Magri, “WDVV equations”, Il Nuovo Cimento C, 38:5 (2015), 166, arXiv: 1510.07950 | DOI

[12] B. O'Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, 103, Acad. Press, New York, 1983 | MR | Zbl

[13] A. Nijenhuis, “Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I”, Indag. Math., 17 (1955), 390–397 | DOI | MR