Keywords: integrable chain, higher symmetry, invariant manifold, recursion operator.
@article{TMF_2018_196_2_a6,
author = {I. T. Habibullin and A. R. Khakimova},
title = {A~direct algorithm for constructing recursion operators and {Lax} pairs for integrable models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {294--312},
year = {2018},
volume = {196},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a6/}
}
TY - JOUR AU - I. T. Habibullin AU - A. R. Khakimova TI - A direct algorithm for constructing recursion operators and Lax pairs for integrable models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 294 EP - 312 VL - 196 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a6/ LA - ru ID - TMF_2018_196_2_a6 ER -
%0 Journal Article %A I. T. Habibullin %A A. R. Khakimova %T A direct algorithm for constructing recursion operators and Lax pairs for integrable models %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 294-312 %V 196 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a6/ %G ru %F TMF_2018_196_2_a6
I. T. Habibullin; A. R. Khakimova. A direct algorithm for constructing recursion operators and Lax pairs for integrable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 294-312. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a6/
[1] I. T. Habibullin, A. R. Khakimova, M. N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, J. Phys. A: Math. Theor., 49:3 (2016), 035202, 35 pp. | DOI | MR | Zbl
[2] E. V. Pavlova, I. T. Khabibullin, A. R. Khakimova, “Ob odnoi integriruemoi diskretnoi sisteme”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 140, VINITI RAN, M., 2017, 30–42
[3] I. T. Khabibullin, A. R. Khakimova, “Invariantnye mnogoobraziya i pary Laksa dlya integriruemykh nelineinykh tsepochek”, TMF, 191:3 (2017), 369–388 | DOI | MR
[4] I. T. Habibullin, A. R. Khakimova, “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz”, J. Phys. A: Math. Theor., 50:30 (2017), 305206, 19 pp. | DOI | MR | Zbl
[5] N. Kh. Ibragimov, A. B. Shabat, “Evolyutsionnye uravneniya s netrivialnoi gruppoi Li–Beklunda”, Funkts. analiz i ego pril., 14:1 (1980), 25–36 | DOI | MR | Zbl
[6] B. I. Suleimanov, “«Kvantovaya» linearizatsiya uravnenii Penleve kak komponenta ikh $L,A$ par”, Ufimsk. matem. zhurn., 4:2 (2012), 127–135 | MR
[7] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | MR | Zbl
[8] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl
[9] H. D. Wahlquist, F. B. Estabrook, “Prolongation structures of nonlinear evolution equations”, J. Math. Phys., 16:1 (1975), 1–7 | DOI | MR | Zbl
[10] J. Weiss, M. Tabor, G. Carnevale, “The Painlevé property for partial differential equations”, J. Math. Phys., 24:3 (1983), 522–526 | DOI | MR | Zbl
[11] M. Musette, R. Conte, “Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations”, J. Math. Phys., 32:6 (1991), 1450–1457 | DOI | MR | Zbl
[12] F. W. Nijhoff, A. J. Walker, “The discrete and continuous Painlevé VI hierarchy and the Garnier system”, Glasg. Math. J., 43:A (2001), 109–123 | DOI | MR
[13] A. I. Bobenko, Yu. B. Suris, “Integrable systems on quad-graphs”, Internat. Math. Res. Not., 2002:11 (2002), 573–611 | DOI | MR | Zbl
[14] F. W. Nijhoff, “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297:1–2 (2002), 49–58, arXiv: nlin/0110027 | DOI | MR | Zbl
[15] R. I. Yamilov, “O klassifikatsii diskretnykh uravnenii”, Integriruemye sistemy, ed. A. B. Shabat, BFAN SSSR, Ufa, 1982, 95–114 | Zbl
[16] P. Xenitidis, “Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case”, Group Analysis of Differential Equations and Integrable Systems (Protaras, Cyprus, October 26–30, 2008), eds. N. Ivanova, C. Sophocleous, R. Popovych, P. Damianou, A. Nikitin, Cyprus Univ., Protaras, Cyprus, 2008, 226–142, arXiv: 0902.3954 | MR
[17] M. Gürses, A. Karasu, V. V. Sokolov, “On construction of recursion operators from Lax representation”, J. Math. Phys., 40:12 (1999), 6473–6490 | DOI | MR | Zbl
[18] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Korteweg–de Vries equation and generalizations. VI. Methods for exact solution”, Commun. Pure Appl. Math., 27:1 (1974), 97–133 | DOI | MR | Zbl
[19] I. M. Gelfand, L. A. Dikii, “Drobnye stepeni operatorov i gamiltonovy sistemy”, Funkts. analiz i ego pril., 10:4 (1976), 13–29 | DOI | MR | Zbl
[20] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1170 | DOI | MR
[21] V. V. Sokolov, “O gamiltonovosti uravneniya Krechevera–Novikova”, Dokl. AN SSSR, 277:1 (1984), 48–50 | MR
[22] M. Gürses, A. Karasu, “Integrable KdV systems: recursion operators of degree four”, Phys. Lett. A, 251:4 (1999), 247–249 | DOI | MR | Zbl
[23] S. I. Svinolupov, “Iordanovy algebry i obobschennye uravneniya Kortevega–de Friza”, TMF, 87:3 (1991), 391–403 | DOI | MR | Zbl
[24] J. Krasil'shchik, “Cohomology background in geometry of PDE”, Secondary Calculus and Cohomological Physics, Contemporary Mathematics, 219, eds. M. Henneaux, J. Krasil'shchik, A. Vinogradov, AMS, Providence, RI, 1998, 121–140 | DOI
[25] H. Zhang, G. Z. Tu, W. Oevel, B. Fuchssteiner, “Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure”, J. Math. Phys., 32:7 (1991), 1908–1918 | DOI | MR | Zbl
[26] W. Oevel, H. Zhang, B. Fuchssteiner, “Mastersymmetries and multi-Hamiltonian formulations for some integrable lattice systems”, Progr. Theor. Phys., 81:2 (1989), 294–308 | DOI | MR
[27] P. J. Olver, “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18:6 (1977), 1212–1215 | DOI | MR | Zbl
[28] R. I. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR | Zbl
[29] D. Levi, R. Yamilov, “Conditions for the existence of higher symmetries of evolutionary equations on the lattice”, J. Math. Phys., 38:12 (1997), 6648–6674 | DOI | MR | Zbl
[30] F. Khanizade, A. V. Mikhailov, Dzh. P. Vang, “Preobrazovaniya Darbu i rekursionnye operatory dlya differentsialno-raznostnykh uravnenii”, TMF, 177:3 (2013), 387–440 | DOI | DOI | MR | Zbl
[31] R. N. Garifullin, E. V. Gudkova, I. T. Habibullin, “Method for searching higher symmetries for quad-graph equations”, J. Phys. A: Math. Theor., 44:32 (2011), 325202, 16 pp. | DOI | MR
[32] P. E. Hydon, C. M. Viallet, “Asymmetric integrable quad-graph equations”, Appl. Anal., 89:4 (2010), 493–506 | DOI | MR | Zbl
[33] R. Garifullin, I. Habibullin, M. Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space-time”, SIGMA, 8 (2012), 062, 33 pp. | DOI | MR | Zbl
[34] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1(187) (1976), 55–136 | DOI | MR | Zbl