Multiparametric families of solutions of the Kadomtsev–Petviashvili-I equation, the structure of their rational representations, and multi-rogue waves
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 266-293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct solutions of the Kadomtsev–Petviashvili-I equation in terms of Fredholm determinants. We deduce solutions written as a quotient of Wronskians of order $2N$. These solutions, called solutions of order $N$, depend on $2N{-}1$ parameters. They can also be written as a quotient of two polynomials of degree $2N(N+1)$ in $x$, $y$, and $t$ depending on $2N-2$ parameters. The maximum of the modulus of these solutions at order $N$ is equal to $2(2N+1)^2$. We explicitly construct the expressions up to the order six and study the patterns of their modulus in the plane $(x,y)$ and their evolution according to time and parameters.
Keywords: Kadomtsev–Petviashvili equation, Fredholm determinant, Wronskian, lump
Mots-clés : rogue wave.
@article{TMF_2018_196_2_a5,
     author = {P. Gaillard},
     title = {Multiparametric families of solutions of {the~Kadomtsev{\textendash}Petviashvili-I} equation, the~structure of their rational representations, and multi-rogue waves},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {266--293},
     year = {2018},
     volume = {196},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a5/}
}
TY  - JOUR
AU  - P. Gaillard
TI  - Multiparametric families of solutions of the Kadomtsev–Petviashvili-I equation, the structure of their rational representations, and multi-rogue waves
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 266
EP  - 293
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a5/
LA  - ru
ID  - TMF_2018_196_2_a5
ER  - 
%0 Journal Article
%A P. Gaillard
%T Multiparametric families of solutions of the Kadomtsev–Petviashvili-I equation, the structure of their rational representations, and multi-rogue waves
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 266-293
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a5/
%G ru
%F TMF_2018_196_2_a5
P. Gaillard. Multiparametric families of solutions of the Kadomtsev–Petviashvili-I equation, the structure of their rational representations, and multi-rogue waves. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 266-293. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a5/

[1] B. B. Kadomtsev, B. I. Petviashvili, “Ob ustoichivosti uedinennykh voln v slabo dispergiruyuschikh sredakh”, Dokl. AN SSSR, 192:4 (1970), 753–756 | Zbl

[2] M. J. Ablowitz, H. Segur, “On the evolution of packets of water waves”, J. Fluid Mech., 92:4 (1979), 691–715 | DOI | MR | Zbl

[3] D. E. Pelinovsky, Yu. A. Stepanyants, Yu. S. Kivshar, “Self-focusing of plane dark solitons in nonlinear defocusing media”, Phys. Rev. E, 51:5 (1995), 5016–5026 | DOI | MR

[4] V. S. Dryuma, “Ob analiticheskom reshenii dvumernogo uravneniya Kortevega–de Friza”, Pisma v ZhETF, 19:12 (1973), 753–755

[5] S. V. Manakov, V. E. Zakharov, L. A. Bordag, V. B. Matveev, “Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction”, Phys. Lett., 63:3 (1977), 205–206 | DOI

[6] I. M. Krichever, “O ratsionalnykh resheniyakh uravneniya Kadomtseva–Petviashvili i ob integriruemykh sistemakh $N$ chastits na pryamoi”, Funkts. analiz i ego pril., 12:1 (1978), 76–78 | DOI | MR | Zbl

[7] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya nad rimanovymi poverkhnostyami i uravnenie Kadomtseva–Petviashvili (KP). I”, Funkts. analiz i ego pril., 12:4 (1978), 41–52 | DOI | MR | Zbl

[8] B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2(218) (1981), 11–80 | DOI | MR | Zbl

[9] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | DOI | MR | Zbl

[10] J. Satsuma, M. J. Ablowitz, “Two-dimensional lumps in nonlinear dispersive systems”, J. Math. Phys., 20 (1979), 1496–1503 | DOI | MR | Zbl

[11] V. B. Matveev, “Darboux transformation and explicit solutions of the Kadomtcev–Petviaschvily equation depending on functional parameters”, Lett. Math. Phys., 3:3 (1979), 213–216 | DOI | MR | Zbl

[12] J. J. C. Nimmo, N. C. Freeman, “Rational solutions of the KdV equation in wronskian form”, Phys. Lett. A, 96:9 (1983), 443–446 | DOI | MR

[13] J. J. C. Nimmo, N. C. Freeman, “The use of Bäcklund transformations in obtaining $N$-soliton solutions in Wronskian form”, J. Phys. A: Math. Gen., 17:7 (1984), 1415–1424 | DOI | MR

[14] V. B. Matveev, M. A. Salle, “New families of the explicit solutions of the Kadomtcev–Petviaschvily equation and their application to Johnson equation”, Some Topics on Inverse Problems (Montpellier, France, November 30 – December 4, 1987), ed. P. C. Sabatier, World Sci., Singapore, 1987, 304–315 | MR

[15] D. E. Pelinovskii, Yu. A. Stepanyants, “Novye multisolitonnye resheniya uravneniya Kadomtseva–Petviashvili”, Pisma v ZhETF, 57:1 (1993), 25–29

[16] D. E. Pelinovsky, “Rational solutions of the Kadomtsev–Petviashvili hierarchy and the dynamics of their poles. I. New form of a general rational solution”, J. Math. Phys., 35:11 (1994), 5820–5830 | DOI | MR | Zbl

[17] M. J. Ablowitz, J. Villarroel, “Solutions to the time dependent Schrödinger and the Kadomtsev–Petviashvili equations”, Phys. Rev. Lett., 78:4 (1997), 570–573 | DOI | MR

[18] J. Villarroel, M. J. Ablowitz, “On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev–Petviashvili I equation”, Commun. Math. Phys., 207:1 (1999), 1–42 | DOI | MR | Zbl

[19] M. J. Ablowitz, S. Chakravarty, A. D. Trubatch, J. Villaroel, “A novel class of solution of the non-stationary Schrödinger and the KP equations”, Phys. Lett. A, 267:2–3 (2000), 132–146 | DOI | MR | Zbl

[20] G. Biondini, Y. Kodama, “On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy”, J. Phys. A: Math. Gen., 36:42 (2003), 10519–10536 | DOI | MR | Zbl

[21] Y. Kodama, “Young diagrams and N solitons solutions to the KP equation”, J. Phys. A: Math. Gen., 37:46 (2004), 11169–11190 | DOI | MR | Zbl

[22] G. Biondini, “Line soliton interactions of the Kadomtsev–Petviashvili equation”, Phys. Rev. Lett., 99:6 (2007), 064103, 4 pp. | DOI

[23] P. Gaillard, “Rational solutions to the KPI equation and multi rogue waves”, Ann. Phys., 367 (2016), 1–5 | DOI | MR

[24] P. Gaillard, “Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves”, J. Math. Phys., 57:6 (2016), 063505, 12 pp. | DOI | MR | Zbl