Matrix Kadomtsev--Petviashvili equation: Tropical limit, Yang--Baxter and pentagon maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 254-265

Voir la notice de l'article provenant de la source Math-Net.Ru

In the tropical limit of matrix KP-II solitons, their support at a fixed time is a planar graph with "polarizations" attached to its linear parts. We explore a subclass of soliton solutions whose tropical limit graph has the form of a rooted and generically binary tree and also solutions whose limit graph comprises two relatively inverted such rooted tree graphs. The distribution of polarizations over the lines constituting the graph is fully determined by a parameter-dependent binary operation and a Yang–Baxter map (generally nonlinear), which becomes linear in the vector KP case and is hence given by an $R$-matrix. The parameter dependence of the binary operation leads to a solution of the pentagon equation, which has a certain relation to the Rogers dilogarithm via a solution of the hexagon equation, the next member in the family of polygon equations. A generalization of the $R$-matrix obtained in the vector KP case also solves a pentagon equation. A corresponding local version of the latter then leads to a new solution of the hexagon equation.
Mots-clés : soliton, KP equation, hexagon equation
Keywords: Yang–Baxter map, pentagon equation, tropical limit, binary tree, dilogarithm.
@article{TMF_2018_196_2_a4,
     author = {A. Dimakis and F. M\"uller-Hoissen},
     title = {Matrix {Kadomtsev--Petviashvili} equation: {Tropical} limit, {Yang--Baxter} and pentagon maps},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--265},
     publisher = {mathdoc},
     volume = {196},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a4/}
}
TY  - JOUR
AU  - A. Dimakis
AU  - F. Müller-Hoissen
TI  - Matrix Kadomtsev--Petviashvili equation: Tropical limit, Yang--Baxter and pentagon maps
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 254
EP  - 265
VL  - 196
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a4/
LA  - ru
ID  - TMF_2018_196_2_a4
ER  - 
%0 Journal Article
%A A. Dimakis
%A F. Müller-Hoissen
%T Matrix Kadomtsev--Petviashvili equation: Tropical limit, Yang--Baxter and pentagon maps
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 254-265
%V 196
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a4/
%G ru
%F TMF_2018_196_2_a4
A. Dimakis; F. Müller-Hoissen. Matrix Kadomtsev--Petviashvili equation: Tropical limit, Yang--Baxter and pentagon maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 254-265. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a4/