Keywords: Yang–Baxter map, pentagon equation, tropical limit, binary tree, dilogarithm.
@article{TMF_2018_196_2_a4,
author = {A. Dimakis and F. M\"uller-Hoissen},
title = {Matrix {Kadomtsev{\textendash}Petviashvili} equation: {Tropical} limit, {Yang{\textendash}Baxter} and pentagon maps},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {254--265},
year = {2018},
volume = {196},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a4/}
}
TY - JOUR AU - A. Dimakis AU - F. Müller-Hoissen TI - Matrix Kadomtsev–Petviashvili equation: Tropical limit, Yang–Baxter and pentagon maps JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 254 EP - 265 VL - 196 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a4/ LA - ru ID - TMF_2018_196_2_a4 ER -
A. Dimakis; F. Müller-Hoissen. Matrix Kadomtsev–Petviashvili equation: Tropical limit, Yang–Baxter and pentagon maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 254-265. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a4/
[1] A. Dimakis, F. Müller-Hoissen, Matrix KP: tropical limit and Yang–Baxter maps, arXiv: 1708.05694
[2] A. Dimakis, F. Müller-Hoissen, “KP line solitons and Tamari lattices”, J. Phys. A: Math. Theor., 44:2 (2011), 025203, 49 pp. | DOI | MR | Zbl
[3] A. Dimakis, F. Müller-Hoissen, “KP solitons, higher Bruhat and Tamari orders”, Associahedra, Tamari Lattices and Related Structures, Progress in Mathematics, 299, eds. F. Müller-Hoissen, J. Pallo, J. Stasheff, Birkhäuser, Basel, 2012, 391–423 | DOI | MR
[4] A. Dimakis, F. Müller-Hoissen, “KdV soliton interactions: a tropical view”, J. Phys.: Conf. Ser., 482:1 (2014), 012010, 11 pp. | DOI
[5] A. Dimakis, F. Müller-Hoissen, “Simplex and polygon equations”, SIGMA, 11 (2015), 042, 49 pp., arXiv: 1409.7855 | DOI | MR | Zbl
[6] M. M. Kapranov, V. A. Voevodsky, “2-Categories and Zamolodchikov tetrahedron equations”, Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods (Pennsylvania State University, University Park, PA, USA, July 6–26, 1991), Proceedings of Symposia in Pure Mathematics, 56, eds. W. J. Haboush, B. J. Parshall, AMS, Providence, RI, 1994, 177–259 | DOI | MR | Zbl
[7] R. Street, “Fusion operators and cocycloids in monoidal categories”, Appl. Categ. Struct., 6:2 (1998), 177–191 | DOI | MR | Zbl
[8] I. G. Korepanov, “Two-cocycles give a full nonlinear parameterization of the simplest 3–3 relation”, Lett. Math. Phys., 104:10 (2014), 1235–1261 | DOI | MR | Zbl
[9] R. M. Kashaev, “A simple model of $4$D-TQFT”, arXiv: 1405.5763
[10] R. Kashaev, “On realizations of Pachner moves in $4$d”, J. Knot Theory Ramifications, 24:13 (2015), 1541002, 13 pp. | DOI | MR | Zbl
[11] I. G. Korepanov, N. M. Sadykov, “Hexagon cohomologies and a cubic TQFT action”, arXiv: 1707.02847
[12] R. M. Kashaev, S. M. Sergeev, “On pentagon, ten-term, and tetrahedron relations”, Commun. Math. Phys., 195:2 (1998), 309–319 | DOI | MR | Zbl
[13] R. M. Kashaev, “O matrichnykh obobscheniyakh dilogarifma”, TMF, 118:3 (1999), 398–404 | DOI | DOI | MR | Zbl
[14] L. J. Rogers, “On function sum theorems connected with the series $\sum_{n=1}^\infty \frac{x^n}{n^2}$”, Proc. London Math. Soc. (2), s2-4:1 (1907), 169–189 | DOI | MR