Matrix Kadomtsev--Petviashvili equation: Tropical limit, Yang--Baxter and pentagon maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 254-265
Voir la notice de l'article provenant de la source Math-Net.Ru
In the tropical limit of matrix KP-II solitons, their support at a fixed time is a planar graph with "polarizations" attached to its linear parts. We explore a subclass of soliton solutions whose tropical limit graph has the form of a rooted and generically binary tree and also solutions whose limit graph comprises two relatively inverted such rooted tree graphs. The distribution of polarizations over the lines constituting the graph is fully determined by a parameter-dependent binary operation and a Yang–Baxter map (generally nonlinear), which becomes linear in the vector KP case and is hence given by an $R$-matrix. The parameter dependence of the binary operation leads to a solution of the pentagon equation, which has a certain relation to the Rogers dilogarithm via a solution of the hexagon equation, the next member in the family of polygon equations. A generalization of the $R$-matrix obtained in the vector KP case also solves a pentagon equation. A corresponding local version of the latter then leads to a new solution of the hexagon equation.
Mots-clés :
soliton, KP equation, hexagon equation
Keywords: Yang–Baxter map, pentagon equation, tropical limit, binary tree, dilogarithm.
Keywords: Yang–Baxter map, pentagon equation, tropical limit, binary tree, dilogarithm.
@article{TMF_2018_196_2_a4,
author = {A. Dimakis and F. M\"uller-Hoissen},
title = {Matrix {Kadomtsev--Petviashvili} equation: {Tropical} limit, {Yang--Baxter} and pentagon maps},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {254--265},
publisher = {mathdoc},
volume = {196},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a4/}
}
TY - JOUR AU - A. Dimakis AU - F. Müller-Hoissen TI - Matrix Kadomtsev--Petviashvili equation: Tropical limit, Yang--Baxter and pentagon maps JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 254 EP - 265 VL - 196 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a4/ LA - ru ID - TMF_2018_196_2_a4 ER -
%0 Journal Article %A A. Dimakis %A F. Müller-Hoissen %T Matrix Kadomtsev--Petviashvili equation: Tropical limit, Yang--Baxter and pentagon maps %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 254-265 %V 196 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a4/ %G ru %F TMF_2018_196_2_a4
A. Dimakis; F. Müller-Hoissen. Matrix Kadomtsev--Petviashvili equation: Tropical limit, Yang--Baxter and pentagon maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 254-265. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a4/