Mots-clés : skyrmion
@article{TMF_2018_196_2_a3,
author = {G. De Matteis and L. Martina and V. Turco},
title = {Skyrmion states in chiral liquid crystals},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {238--253},
year = {2018},
volume = {196},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a3/}
}
G. De Matteis; L. Martina; V. Turco. Skyrmion states in chiral liquid crystals. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 238-253. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a3/
[1] A. O. Leonov, I. E. Dragunov, U. K. Rößler, A. N. Bogdanov, “Theory of skyrmion states in liquid crystals”, Phys. Rev. E, 90:4 (2014), 042502, 6 pp. | DOI
[2] C. Carboni, A. K. George, A. Al-Lawati, “Observation of bubble domains at the cholesteric to homeotropic-nematic transition in a confined chiral nematic liquid crystal”, Liquid Crystals, 31:8 (2004), 1109–1113 | DOI
[3] J. Fukuda, S. Žumer, “Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal”, Nature Commun., 2 (2011), 246, 9 pp. | DOI
[4] P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments, CRC Press, Boca Raton, FL, 2005
[5] R. D. Kamien, J. V. Selinger, “Order and frustration in chiral liquid crystals”, J. Phys.: Condens. Matter, 13:3 (2001), R1–R22 | DOI
[6] J. Baudry, S. Pirkl, P. Oswald, “Topological properties of singular fingers in frustrated cholesteric liquid crystals”, Phys. Rev. E, 57:3 (1998), 3038–3049 | DOI
[7] P. Oswald, A. Dequidt, “Thermomechanically driven spirals in a cholesteric liquid crystal”, Phys. Rev. E, 77:5 (2008), 051706, 5 pp. | DOI
[8] T. Akahane, T. Tako, “Molecular alignment of bubble domains in cholesteric-nematic mixtures”, Japan J. Appl. Phys., 15:8 (1976), 1559–1560 | DOI
[9] B. Kerllenevich, A. Coche, “Bubble domain in cholesteric liquid crystals”, Mol. Cryst. Liq. Cryst., 68:1 (1981), 47–55 | DOI
[10] J. Fukuda, S. Žumer, “Novel defect structures in a strongly confined liquid-crystalline blue phase”, Phys. Rev. Lett., 104:1 (2010), 017801, 4 pp. | DOI
[11] S. Afghah, J. V. Selinger, “Theory of helicoids and skyrmions in confined cholesteric liquid crystals”, Phys. Rev. E, 96:1 (2017), 012708, 10 pp., arXiv: . 1702.06896 | DOI
[12] P. D. Gennes, J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993
[13] I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals, Taylor and Francis, London, New York, 2004
[14] A. Rapini, M. Papoular, “Distortion d'une lamelle nématique sous champ magnétique conditions d'ancrage aux parois”, J. Phys. Colloques, 30:C4 (1969), 54–56 | DOI
[15] P. J. Kedney, I. W. Stewart, “On the magnetically induced cholesteric to nematic phase transition”, Lett. Math. Phys., 31:4 (1994), 261–269 | DOI | MR | Zbl
[16] N. Manton, P. Sutcliffe, Topological Solitons, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR
[17] A. A. Belavin, A. M. Polyakov, “Metastabilnye sostoyaniya dvumernogo izotropnogo ferromagnetika”, Pisma v ZhETF, 22:10 (1975), 503–506
[18] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | MR | Zbl | Zbl
[19] A. Barone, F. Esposito, C. J. Magee, A. C. Scott, “Theory and applications of the sine-Gordon equation”, Riv. Nuovo Cim., 1:2 (1971), 227–267
[20] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | MR
[21] P. A. Clarkson, Chapter 32 Painlevé Transcendents https://dlmf.nist.gov/32
[22] B. M. McCoy, C. A. Tracy, T. T. Wu, “Painlevé functions of the third kind”, J. Math. Phys., 18:5 (1977), 1058–1092 | DOI | MR | Zbl
[23] A. Nakamura, “Exact cylindrical soliton solutions of the sine-Gordon equation, the sinh- Gordon equation and the periodic Toda equation”, J. Phys. Soc. Japan, 57:10 (1988), 3309–3322 | DOI | MR
[24] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé transcendents. The Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, AMS, Providence, RI, 2006 | DOI | MR | Zbl
[25] V. Yu. Novokshenov, “Ob asimptotike obschego deistvitelnogo resheniya tretego uravneniya Penleve”, Dokl. AN SSSR, 283:5 (1985), 1161–1165 | MR
[26] A. N. Bogdanov, “Theory of spherulitic domains in cholesteric liquid crystals with positive dielectric anisotropy”, Pisma v ZhETF, 71:2 (2000), 123–127
[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes. The Art of Scientific Computing, Cambridge Univ. Press, Cambridge, 2007 | MR
[28] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM, Philadelphia, PA, 2007 | DOI | MR
[29] A. Hubert, R. Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures, Springer, Berlin, 2009 | DOI
[30] A. B. Borisov, V. V. Kiseliev, “Topological defects in incommensurate magnetic and crystal structures and quasi-periodic solutions of the elliptic sine-Gordon equation”, Phys. D, 31:1 (1988), 49–64 | DOI | MR | Zbl
[31] V. Yu. Novokshenov, A. G. Shagalov, “Bound states of the elliptic sine-Gordon equation”, Phys. D, 106:1–2 (1997), 81–94 | DOI | MR | Zbl
[32] G. Leibbrandt, “Exact solutions of the elliptic sine equation in two space dimensions with application to the Josephson effect”, Phys. Rev. B., 15:7 (1977), 3353–3361 | DOI
[33] A. B. Borisov, V. V. Kiseliev, “Inverse problem for an elliptic sine-Gordon equation with an asymptotic behaviour of the cnoidal-wave type”, Inverse Problems, 5:6 (1999), 959–982 | DOI | MR
[34] G. L. Lamb, Jr., Elements of Soliton Theory, Wiley, New York, 1980 | MR
[35] E. L. Aero, “Ploskie granichnye zadachi dlya uravneniya sinus-Gelmgoltsa v teorii uprugosti zhidkikh kristallov v neodnorodnykh magnitnykh polyakh”, PMM, 60:1 (1996), 79–87 | DOI | MR | Zbl
[36] S. V. Burylov, A. N. Zakhlevnykh, “Analytical description of 2D magnetic Freedericksz transition in a rectangular cell of a nematic liquid crystal”, Eur. Phys. J. E, 39:6 (2016), 65 | DOI
[37] A. C. Bryan, C. R. Haines, A. E. G. Stuart, “A classification of the separable solutions of the two-dimensional sine-Gordon equation and of its Laplacian variant”, Nuovo Cimento B, 58:1 (1980), 1–33 | DOI | MR
[38] A. S. Fokas, J. Lenells, B. Pelloni, “Boundary value problems for the elliptic sine-Gordon equation in a semi-strip”, J. Nonlinear Sci., 23:2 (2013), 241–282 | DOI | MR | Zbl