Skyrmion states in chiral liquid crystals
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 238-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze static configurations for chiral liquid crystals in the framework of the Oseen–Frank theory. In particular, we find numerical solutions for localized axisymmetric states in confined chiral liquid crystals with weak homeotropic anchoring at the boundaries. These solutions describe the distortions of two-dimensional skyrmions, known as either spherulites or cholesteric bubbles, which have been observed experimentally in these systems. We outline relations to nonlinear integrable equations and use the relations to study the asymptotic behavior of the solutions. Using analytic methods, we build approximate solutions of the equilibrium equations and analyze the generation and stabilization of these states in relation to the material parameters, external fields, and anchoring boundary conditions.
Keywords: chiral liquid crystal, weak homeotropic anchoring, equilibrium equation, asymptotics, nonlinear integrable equation.
Mots-clés : skyrmion
@article{TMF_2018_196_2_a3,
     author = {G. De Matteis and L. Martina and V. Turco},
     title = {Skyrmion states in chiral liquid crystals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {238--253},
     year = {2018},
     volume = {196},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a3/}
}
TY  - JOUR
AU  - G. De Matteis
AU  - L. Martina
AU  - V. Turco
TI  - Skyrmion states in chiral liquid crystals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 238
EP  - 253
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a3/
LA  - ru
ID  - TMF_2018_196_2_a3
ER  - 
%0 Journal Article
%A G. De Matteis
%A L. Martina
%A V. Turco
%T Skyrmion states in chiral liquid crystals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 238-253
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a3/
%G ru
%F TMF_2018_196_2_a3
G. De Matteis; L. Martina; V. Turco. Skyrmion states in chiral liquid crystals. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 238-253. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a3/

[1] A. O. Leonov, I. E. Dragunov, U. K. Rößler, A. N. Bogdanov, “Theory of skyrmion states in liquid crystals”, Phys. Rev. E, 90:4 (2014), 042502, 6 pp. | DOI

[2] C. Carboni, A. K. George, A. Al-Lawati, “Observation of bubble domains at the cholesteric to homeotropic-nematic transition in a confined chiral nematic liquid crystal”, Liquid Crystals, 31:8 (2004), 1109–1113 | DOI

[3] J. Fukuda, S. Žumer, “Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal”, Nature Commun., 2 (2011), 246, 9 pp. | DOI

[4] P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments, CRC Press, Boca Raton, FL, 2005

[5] R. D. Kamien, J. V. Selinger, “Order and frustration in chiral liquid crystals”, J. Phys.: Condens. Matter, 13:3 (2001), R1–R22 | DOI

[6] J. Baudry, S. Pirkl, P. Oswald, “Topological properties of singular fingers in frustrated cholesteric liquid crystals”, Phys. Rev. E, 57:3 (1998), 3038–3049 | DOI

[7] P. Oswald, A. Dequidt, “Thermomechanically driven spirals in a cholesteric liquid crystal”, Phys. Rev. E, 77:5 (2008), 051706, 5 pp. | DOI

[8] T. Akahane, T. Tako, “Molecular alignment of bubble domains in cholesteric-nematic mixtures”, Japan J. Appl. Phys., 15:8 (1976), 1559–1560 | DOI

[9] B. Kerllenevich, A. Coche, “Bubble domain in cholesteric liquid crystals”, Mol. Cryst. Liq. Cryst., 68:1 (1981), 47–55 | DOI

[10] J. Fukuda, S. Žumer, “Novel defect structures in a strongly confined liquid-crystalline blue phase”, Phys. Rev. Lett., 104:1 (2010), 017801, 4 pp. | DOI

[11] S. Afghah, J. V. Selinger, “Theory of helicoids and skyrmions in confined cholesteric liquid crystals”, Phys. Rev. E, 96:1 (2017), 012708, 10 pp., arXiv: . 1702.06896 | DOI

[12] P. D. Gennes, J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993

[13] I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals, Taylor and Francis, London, New York, 2004

[14] A. Rapini, M. Papoular, “Distortion d'une lamelle nématique sous champ magnétique conditions d'ancrage aux parois”, J. Phys. Colloques, 30:C4 (1969), 54–56 | DOI

[15] P. J. Kedney, I. W. Stewart, “On the magnetically induced cholesteric to nematic phase transition”, Lett. Math. Phys., 31:4 (1994), 261–269 | DOI | MR | Zbl

[16] N. Manton, P. Sutcliffe, Topological Solitons, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR

[17] A. A. Belavin, A. M. Polyakov, “Metastabilnye sostoyaniya dvumernogo izotropnogo ferromagnetika”, Pisma v ZhETF, 22:10 (1975), 503–506

[18] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | MR | Zbl | Zbl

[19] A. Barone, F. Esposito, C. J. Magee, A. C. Scott, “Theory and applications of the sine-Gordon equation”, Riv. Nuovo Cim., 1:2 (1971), 227–267

[20] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | MR

[21] P. A. Clarkson, Chapter 32 Painlevé Transcendents https://dlmf.nist.gov/32

[22] B. M. McCoy, C. A. Tracy, T. T. Wu, “Painlevé functions of the third kind”, J. Math. Phys., 18:5 (1977), 1058–1092 | DOI | MR | Zbl

[23] A. Nakamura, “Exact cylindrical soliton solutions of the sine-Gordon equation, the sinh- Gordon equation and the periodic Toda equation”, J. Phys. Soc. Japan, 57:10 (1988), 3309–3322 | DOI | MR

[24] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé transcendents. The Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, AMS, Providence, RI, 2006 | DOI | MR | Zbl

[25] V. Yu. Novokshenov, “Ob asimptotike obschego deistvitelnogo resheniya tretego uravneniya Penleve”, Dokl. AN SSSR, 283:5 (1985), 1161–1165 | MR

[26] A. N. Bogdanov, “Theory of spherulitic domains in cholesteric liquid crystals with positive dielectric anisotropy”, Pisma v ZhETF, 71:2 (2000), 123–127

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes. The Art of Scientific Computing, Cambridge Univ. Press, Cambridge, 2007 | MR

[28] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM, Philadelphia, PA, 2007 | DOI | MR

[29] A. Hubert, R. Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures, Springer, Berlin, 2009 | DOI

[30] A. B. Borisov, V. V. Kiseliev, “Topological defects in incommensurate magnetic and crystal structures and quasi-periodic solutions of the elliptic sine-Gordon equation”, Phys. D, 31:1 (1988), 49–64 | DOI | MR | Zbl

[31] V. Yu. Novokshenov, A. G. Shagalov, “Bound states of the elliptic sine-Gordon equation”, Phys. D, 106:1–2 (1997), 81–94 | DOI | MR | Zbl

[32] G. Leibbrandt, “Exact solutions of the elliptic sine equation in two space dimensions with application to the Josephson effect”, Phys. Rev. B., 15:7 (1977), 3353–3361 | DOI

[33] A. B. Borisov, V. V. Kiseliev, “Inverse problem for an elliptic sine-Gordon equation with an asymptotic behaviour of the cnoidal-wave type”, Inverse Problems, 5:6 (1999), 959–982 | DOI | MR

[34] G. L. Lamb, Jr., Elements of Soliton Theory, Wiley, New York, 1980 | MR

[35] E. L. Aero, “Ploskie granichnye zadachi dlya uravneniya sinus-Gelmgoltsa v teorii uprugosti zhidkikh kristallov v neodnorodnykh magnitnykh polyakh”, PMM, 60:1 (1996), 79–87 | DOI | MR | Zbl

[36] S. V. Burylov, A. N. Zakhlevnykh, “Analytical description of 2D magnetic Freedericksz transition in a rectangular cell of a nematic liquid crystal”, Eur. Phys. J. E, 39:6 (2016), 65 | DOI

[37] A. C. Bryan, C. R. Haines, A. E. G. Stuart, “A classification of the separable solutions of the two-dimensional sine-Gordon equation and of its Laplacian variant”, Nuovo Cimento B, 58:1 (1980), 1–33 | DOI | MR

[38] A. S. Fokas, J. Lenells, B. Pelloni, “Boundary value problems for the elliptic sine-Gordon equation in a semi-strip”, J. Nonlinear Sci., 23:2 (2013), 241–282 | DOI | MR | Zbl