Higher-order dispersive deformations of multidimensional Poisson brackets of hydrodynamic type
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 214-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of multidimensional Poisson vertex algebras provides a completely algebraic formalism for studying the Hamiltonian structure of partial differential equations for any number of dependent and independent variables. We compute the cohomology of the Poisson vertex algebras associated with two-dimensional, two-component Poisson brackets of hydrodynamic type at the third differential degree. This allows obtaining their corresponding Poisson–Lichnerowicz cohomology, which is the main building block of the theory of their deformations. Such a cohomology is trivial neither in the second group, corresponding to the existence of a class of nonequivalent infinitesimal deformations, nor in the third group, corresponding to the obstructions to extending such deformations.
Keywords: Hamiltonian operator
Mots-clés : hydrodynamic Poisson bracket, Poisson vertex algebra, Poisson cohomology.
@article{TMF_2018_196_2_a2,
     author = {M. Casati},
     title = {Higher-order dispersive deformations of multidimensional {Poisson} brackets of hydrodynamic type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {214--237},
     year = {2018},
     volume = {196},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a2/}
}
TY  - JOUR
AU  - M. Casati
TI  - Higher-order dispersive deformations of multidimensional Poisson brackets of hydrodynamic type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 214
EP  - 237
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a2/
LA  - ru
ID  - TMF_2018_196_2_a2
ER  - 
%0 Journal Article
%A M. Casati
%T Higher-order dispersive deformations of multidimensional Poisson brackets of hydrodynamic type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 214-237
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a2/
%G ru
%F TMF_2018_196_2_a2
M. Casati. Higher-order dispersive deformations of multidimensional Poisson brackets of hydrodynamic type. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 214-237. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a2/

[1] M. Casati, “On deformations of multidimensional Poisson brackets of hydrodynamic type”, Commun. Math. Phys., 335:2 (2015), 851–894, arXiv: 1312.1878 | DOI | MR | Zbl

[2] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[3] B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[4] E. Getzler, “A Darboux theorem for Hamiltonian operators in the formal calculus of variations”, Duke Math. J., 111:3 (2002), 535–560 | DOI | MR | Zbl

[5] L. Degiovanni, F. Magri, V. Sciacca, “On deformation of Poisson manifolds of hydrodynamic type”, Commun. Math. Phys., 253:1 (2005), 1–24, arXiv: nlin/0103052 | DOI | MR | Zbl

[6] B. A. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, arXiv: math/0108160

[7] C. S. Gardner, “Korteweg–de Vries equation and generalizations. IV. The Korteweg–de Vries equation as a Hamiltonian system”, J. Math. Phys., 12:8 (1971), 1548–1551 | DOI | MR | Zbl

[8] D. J. Benney, “Some properties of long nonlinear waves”, Stud. Appl. Math., 52:1 (1973), 45–50 | DOI | Zbl

[9] F. Magri, “A geometrical approach to the nonlinear solvable equations”, Nonlinear Evolution Equations and Dynamical Systems, Lecture Notes in Physics, 120, eds. M. Boiti, F. Pempinelli, G. Soliani, Springer, Berlin, New York, 1980, 233–263 | DOI | MR

[10] B. A. Dubrovin, S. P. Novikov, “O skobkakh Puassona gidrodinamicheskogo tipa”, Dokl. AN SSSR, 279:2 (1984), 294–297 | MR | Zbl

[11] O. I. Mokhov, “Klassifikatsiya neosobykh mnogomernykh skobok Dubrovina–Novikova”, Funkts. analiz i ego pril., 42:1 (2008), 39–52 | DOI | Zbl

[12] E. V. Ferapontov, P. Lorenzoni, A. Savoldi, “Hamiltonian operators of Dubrovin–Novikov type in 2D”, Lett. Math. Phys., 105:3 (2015), 341–377, arXiv: 1312.0475 | DOI | MR | Zbl

[13] M. Kasati, “Dispersionnye deformatsii gamiltonovoi struktury uravnenii Eilera”, TMF, 188:3 (2016), 386–396 | DOI | DOI | MR

[14] G. Carlet, M. Casati, S. Shadrin, “Poisson cohomology of scalar multidimensional Dubrovin–Novikov brackets”, J. Geom. Phys., 114:1 (2017), 404–419 | DOI | MR | Zbl

[15] G. Carlet, M. Casati, S. Shadrin, Normal forms of dispersive scalar Poisson brackets with two independent variables, arXiv: 1707.03703

[16] I. M. Gelfand, L. A. Dikii, “Asimptotika rezolventy shturm–liuvillevskikh uravnenii i algebra uravnenii Kortevega–de Friza”, UMN, 30:5(185) (1975), 67–100 | DOI | MR | Zbl

[17] O. I. Mokhov, “O skobkakh Puassona tipa Dubrovina–Novikova (DN-skobki)”, Funkts. analiz i ego pril., 22:4 (1988), 92–93 | DOI | MR | Zbl

[18] A. Barakat, A. De Sole, V. G. Kac, “Poisson vertex algebras in the theory of Hamiltonian equations”, Japan J. Math., 4:2 (2009), 141–252 | DOI | MR | Zbl

[19] E. V. Ferapontov, A. V. Odesskii, N. M. Stoilov, “Classification of integrable two-component Hamiltonian systems of hydrodynamic type in $2+1$ dimensions”, J. Math. Phys., 52:7 (2011), 073505, 28 pp., arXiv: 1007.3782 | DOI | MR | Zbl

[20] S. P. Novikov, “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5(227) (1982), 3–49 | DOI | MR | Zbl

[21] A. De Sole, V. G. Kac, “The variational Poisson cohomology”, Japan J. Math., 8:1 (2013), 1–145 | DOI | MR | Zbl

[22] A. Lichnerowicz, “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Differential Geom., 12:2 (1977), 253–300 | DOI | MR | Zbl

[23] M. Casati, D. Valeri, “MasterPVA and WAlg: Mathematica packages for Poisson vertex algebras and classical affine $\mathcal{W}$-algebras”, Bollettino dell'Unione Matematica Italiana, 2017, 29 pp. | DOI

[24] R. Vitolo, P. H. M. Kersten, G. Posterhard, G. Roelofs, CDIFF: A reduce package for computations in geometry of differential equations, 2010, \par http://gdeq.org/files/Cdiff-userguide-3.pdf

[25] R. Vitolo, CDE: A reduce package for integrability of PDEs Version 1.0, 2014, \par http://gdeq.org/files/Cde-userguide-1.0.pdf

[26] W. Plesken, D. Robertz, “Janet's approach to presentations and resolutions for polynomials and linear PDEs”, Arch. Math. (Basel), 84:1 (2005), 22–37 | DOI | MR | Zbl

[27] M. Casati, Multidimensional Poisson vertex algebras and the Poisson cohomology of Hamiltonian structures of hydrodynamic type, PhD Thesis, Scuola Internazionale Superiore di Studi Avanzati di Trieste, Trieste, 2015