@article{TMF_2018_196_2_a1,
author = {F. Calogero},
title = {Zeros of entire functions and related systems of infinitely many nonlinearly coupled evolution equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {193--213},
year = {2018},
volume = {196},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a1/}
}
TY - JOUR AU - F. Calogero TI - Zeros of entire functions and related systems of infinitely many nonlinearly coupled evolution equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 193 EP - 213 VL - 196 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a1/ LA - ru ID - TMF_2018_196_2_a1 ER -
F. Calogero. Zeros of entire functions and related systems of infinitely many nonlinearly coupled evolution equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 193-213. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a1/
[1] F. Calogero, “New solvable variants of the goldfish many-body problem”, Stud. Appl. Math., 137:1 (2016), 123–139 | DOI | MR | Zbl
[2] O. Bihun, F. Calogero, “A new solvable many-body problem of goldfish type”, J. Nonlinear Math. Phys., 23:1 (2016), 28–46 ; “Novel solvable many-body problems”, 23:2 (2016), 190–212 ; “Generations of monic polynomials such that the coefficients of each polynomials of the next generation coincide with the zeros of polynomial of the current generation, and new solvable many-body problems”, Lett. Math. Phys., 106:7 (2016), 1011–1031 ; “Generations of solvable discrete-time dynamical systems”, J. Math. Phys., 58:5 (2017), 052701, 21 pp. ; F. Calogero, “A solvable $N$-body problem of goldfish type featuring $N^2$ arbitrary coupling constants”, J. Nonlinear Math. Phys., 23:2 (2016), 300–305 ; “Three new classes of solvable $N$-body problems of goldfish type with many arbitrary coupling constants”, Symmetry, 8:7 (2016), 53, 16 pp. ; “Novel isochronous $N$-body problems featuring $N$ arbitrary rational coupling constants”, J. Math. Phys., 57:7 (2016), 072901, 11 pp. ; “Yet another class of new solvable $N$-body problems of goldfish type”, Qual. Theory Dyn. Syst., 16:3 (2017), 561–577 ; “New solvable dynamical systems”, J. Nonlinear Math. Phys., 23:4 (2016), 486–493 ; “Integrable Hamiltonian $N$-body problems in the plane featuring $N$ arbitrary functions”, 24:1 (2017), 1–6 ; “New C-integrable and S-integrable systems of nonlinear partial differential equations”, 142–148 ; M. Bruschi, F. Calogero, “A convenient expression of the time-derivative $z_n^{(k)}(t)$, of arbitrary order $k$, of the zero $z_n(t)$ of a time-dependent polynomial $p_N(z;t)$ of arbitrary degree $N$ in $z$, and solvable dynamical systems”, J. Nonlinear Math. Phys., 23:4 (2016), 474–485 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR
[3] F. Calogero, Zeros of Polynomials and Solvable Nonlinear Evolution Equations, Cambridge Univ. Press, Cambridge, 2018, in press
[4] F. Calogero, “Nonlinear differential algorithm to compute all the zeros of a generic polynomial”, J. Math. Phys., 57:8 (2016), 083508, 4 pp., arXiv: 1607.05081 | DOI | MR | Zbl
[5] F. Calogero, “Novel differential algorithm to evaluate all the zeros of any generic polynomial”, J. Nonlinear Math. Phys., 24:4 (2017), 469–472 | DOI | MR
[6] G. Devenport, Multiplikativnaya teoriya chisel, Nauka, M., 1971 | MR | MR | Zbl
[7] F. Calogero, “The neatest many-body problem amenable to exact treatments (a “goldfish”?)”, Phys. D, 152–153 (2001), 78–84 | DOI | MR | Zbl
[8] F. Calogero, “Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations, and related “solvable” many body problems”, Nuovo Cimento B, 43:2 (1978), 177–241 ; Classical Many-Body Problems Amenable to Exact Treatments, Lecture Notes in Physics. New Series m: Monographs, 66, Springer, Berlin, 2001 | DOI | MR | DOI | MR
[9] F. Calogero, Isochronous Systems, Oxford Univ. Press, Oxford, 2012 | MR
[10] F. Calogero, D. Gómez-Ullate, “Asymptotically isochronous systems”, J. Nonlinear Math. Phys., 15:4 (2008), 410–426 | DOI | MR | Zbl
[11] D. Gómez-Ullate, M. Sommacal, “Periods of the goldfish many-body problem”, J. Nonlinear Math. Phys., 12, supp. 1 (2005), 351–362 | DOI | MR
[12] E. Martínez Alonso, A. B. Shabat, “Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type”, Phys. Lett. A, 300:1 (2002), 58–64 ; В. Э. Адлер, А. Б. Шабат, “Модельное уравнение теории солитонов”, ТМФ, 153:1 (2007), 29–45 ; А. Б. Шабат, “Симметрические многочлены и законы сохранения”, Владикавк. матем. журн., 14:4 (2012), 83–94 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | Zbl
[13] G. Gallavotti, C. Marchioro, “On the calculation of an integral”, J. Math. Anal. Appl., 44:3 (1973), 661–675 | DOI | MR | Zbl
[14] E. Bombieri, Problems of the Millennium: The Riemann Hypothesis, Clay Mathematics Institute, Cambridge, MA, 2000
[15] H. M. Edwards, Riemann's Zeta Function, Pure and Applied Mathematics, 58, Acad. Press, New York, 1974 | MR