Zeros of entire functions and related systems of infinitely many nonlinearly coupled evolution equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 193-213

Voir la notice de l'article provenant de la source Math-Net.Ru

Recent findings concerning the zeros of generic polynomials are extended to entire functions featuring infinitely many distinct zeros, and related systems of infinitely many nonlinearly coupled evolution ODEs and PDEs are identified, the solutions of which display interesting properties.
Keywords: zero of an entire function, system of infinitely many evolution ODEs, system of infinitely many evolution PDEs, Riemann zeta function, Riemann hypothesis.
@article{TMF_2018_196_2_a1,
     author = {F. Calogero},
     title = {Zeros of entire functions and related systems of infinitely many nonlinearly coupled evolution equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {193--213},
     publisher = {mathdoc},
     volume = {196},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a1/}
}
TY  - JOUR
AU  - F. Calogero
TI  - Zeros of entire functions and related systems of infinitely many nonlinearly coupled evolution equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 193
EP  - 213
VL  - 196
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a1/
LA  - ru
ID  - TMF_2018_196_2_a1
ER  - 
%0 Journal Article
%A F. Calogero
%T Zeros of entire functions and related systems of infinitely many nonlinearly coupled evolution equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 193-213
%V 196
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a1/
%G ru
%F TMF_2018_196_2_a1
F. Calogero. Zeros of entire functions and related systems of infinitely many nonlinearly coupled evolution equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 193-213. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a1/