Nonlocal symmetries of integrable linearly degenerate equations: A comparative study
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 169-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue the study of Lax integrable equations. We consider four three-dimensional equations{: (1)} the rdDym equation $u_{ty}=u_xu_{xy}- u_yu_{xx}$, $(2)$ the Pavlov equation $u_{yy}=u_{tx}+u_yu_{xx}-u_xu_{xy}$, $(3)$ the universal hierarchy equation $u_{yy}=u_tu_{xy}-u_yu_{tx}$, and $(4)$ the modified Veronese web equation $u_{ty}=u_tu_{xy}-u_yu_{tx}$. For each equation, expanding the known Lax pairs in formal series in the spectral parameter, we construct two differential coverings and completely describe the nonlocal symmetry algebras associated with these coverings. For all four pairs of coverings, the obtained Lie algebras of symmetries manifest similar (but not identical) structures; they are (semi)direct sums of the Witt algebra, the algebra of vector fields on the line, and loop algebras, all of which contain a component of finite grading. We also discuss actions of recursion operators on shadows of nonlocal symmetries.
Keywords: partial differential equation, integrable linearly degenerate equation, nonlocal symmetry, recursion operator.
@article{TMF_2018_196_2_a0,
     author = {H. Baran and I. S. Krasil'shchik and O. I. Morozov and P. Voj\v{c}\'ak},
     title = {Nonlocal symmetries of integrable linearly degenerate equations: {A~comparative} study},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {169--192},
     year = {2018},
     volume = {196},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a0/}
}
TY  - JOUR
AU  - H. Baran
AU  - I. S. Krasil'shchik
AU  - O. I. Morozov
AU  - P. Vojčák
TI  - Nonlocal symmetries of integrable linearly degenerate equations: A comparative study
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 169
EP  - 192
VL  - 196
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a0/
LA  - ru
ID  - TMF_2018_196_2_a0
ER  - 
%0 Journal Article
%A H. Baran
%A I. S. Krasil'shchik
%A O. I. Morozov
%A P. Vojčák
%T Nonlocal symmetries of integrable linearly degenerate equations: A comparative study
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 169-192
%V 196
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a0/
%G ru
%F TMF_2018_196_2_a0
H. Baran; I. S. Krasil'shchik; O. I. Morozov; P. Vojčák. Nonlocal symmetries of integrable linearly degenerate equations: A comparative study. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 169-192. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a0/

[1] H. Baran, I. S. Krasil'shchik, O. I. Morozov, P. Vojčák, “Symmetry reductions and exact solutions of Lax integrable $3$-dimensional systems”, J. Nonlinear Math. Phys., 21:4 (2014), 643–671, arXiv: 1407.0246 | DOI | MR

[2] H. Baran, I. S. Krasil'shchik, O. I. Morozov, P. Vojčák, “Integrability properties of some equations obtained by symmetry reductions”, J. Nonlinear Math. Phys., 22:2 (2015), 210–232, arXiv: 1412.6461 | DOI | MR

[3] J. Gibbons, S. P. Tsarev, “Reductions of the Benney equations”, Phys. Lett. A, 211:1 (1996), 19–24 | DOI | MR | Zbl

[4] Kh. Baran, I. S. Krasilschik, O. I. Morozov, P. Voichak, “Nakrytiya i nelokalnye simmetrii uravnenii, integriruemykh po Laksu”, TMF, 188:3 (2016), 361–385, arXiv: 1507.00897 | DOI | DOI | MR | Zbl

[5] E. V. Ferapontov, J. Moss, “Linearly degenerate partial differential equations and quadratic line complexes”, Commun. Anal. Geom., 23:1 (2015), 91–127, arXiv: 1204.2777 | DOI | MR | Zbl

[6] A. V. Bocharov, A. M. Verbovetskii, S. V. Duzhin, A. V. Samokhin, Yu. N. Torkhov, N. G. Khorkova, V.N. Chetverikov, Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Ser. XX vek. Matematika i mekhanika, 9, eds. A. M. Vinogradov, I. S. Krasilschik, Faktorial Press, M., 2005 | MR | Zbl

[7] I. S. Krasil'shchik, A. M. Vinogradov, “Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations”, Acta Appl. Math., 15:1–2 (1989), 161–209 | DOI | MR | Zbl

[8] M. Marvan, “Another look on recursion operators”, Differential Geometry and Applications (Brno, August 28 – September 1, 1995), eds. J. Janyška, I. Kolář, J. Slovák, Masaryk Univ., Brno, 1996, 393–402 | MR | Zbl

[9] M. Błaszak, “Classical $R$-matrices on Poisson algebras and related dispersionless systems”, Phys. Lett. A, 297:3–4 (2002), 191–195 | DOI | MR

[10] V. Ovsienko, “Bi-Hamiltonian nature of the equation $u_{tx}=u_{xy}u_y-u_{yy}u_x$”, Adv. Pure Appl. Math., 1:1 (2010), 7–17 | DOI | MR | Zbl

[11] M. V. Pavlov, “The Kupershmidt hydrodynamics chains and lattices”, Internat. Math. Res. Not., 2006 (2006), 46987, 43 pp. | MR

[12] O. I. Morozov, “Recursion operators and nonlocal symmetries for integrable rmdKP and rdDym equations”, arXiv: 1202.2308

[13] M. Dunajski, “A class of Einstein–Weil spaces associated to an integrable system of hydrodynamic type”, J. Geom. Phys., 51:1 (2004), 126–137, arXiv: nlin/0311024 | DOI | MR | Zbl

[14] M. V. Pavlov, “Integrable hydrodynamic chains”, J. Math. Phys., 44:9 (2003), 4134–4156, arXiv: nlin/0301010 | DOI | MR | Zbl

[15] L. Martínez Alonso, A. B. Shabat, “Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type”, Phys. Lett. A, 299:4 (2002), 359–365, arXiv: nlin/0202008 | DOI | MR | Zbl

[16] L. Martines Alonso, A. B. Shabat, “Gidrodinamicheskie reduktsii i resheniya universalnoi ierarkhii”, TMF, 140:2 (2004), 216–229 | DOI | DOI | MR | Zbl

[17] O. I. Morozov, “A recursion operator for the universal hierarchy equation via Cartan's method of equivalence”, Cent. Eur. J. Math., 12:2 (2014), 271–283, arXiv: 1205.5748 | DOI | MR | Zbl

[18] V. E. Adler, A. B. Shabat, “Modelnoe uravnenie teorii solitov”, TMF, 153:1 (2007), 29–45 | DOI | DOI | MR | Zbl

[19] I. Zakharevich, Nonlinear wave equation, nonlinear Riemann problem, and the twistor transform of Veronese webs, arXiv: math-ph/0006001

[20] M. Dunajski, W. Kryński, “Einstein–Weyl geometry, dispersionless Hirota equation and Veronese webs”, Math. Proc. Cambridge Philos. Soc., 157:1 (2014), 139–150, arXiv: 1301.0621 | DOI | MR | Zbl

[21] M. Schlichenmaier, Krichever–Novikov Type Algebras. Theory and Applications, De Gruyter Studies in Mathematics, 53, De Gruyter, Berlin, 2014 | MR

[22] A. Sergyeyev, “A simple construction of recursion operators for multidimensional dispersionless integrable systems”, J. Math. Anal. Appl., 454:2 (2017), 468–480, arXiv: 1501.01955 | DOI

[23] A. A. Malykh, Y. Nutku, M. B. Sheftel, “Partner symmetries and non-invariant solutions of four-dimensional heavenly equations”, J. Phys. A.: Math. Theor., 37:30 (2004), 7527–7546, arXiv: math-ph/0403020 | DOI | MR

[24] M. Marvan, A. Sergyeyev, “Recursion operators for dispersionless integrable systems in any dimension”, Inverse Probl., 28:2 (2012), 025011, 12 pp. | DOI | MR | Zbl

[25] O. I. Morozov, A. Sergyeyev, “The four-dimensional Martínez Alonso–Shabat equation: reductions and nonlocal symmetries”, J. Geom. Phys., 85 (2014), 40–45, arXiv: 1401.7942 | DOI | MR | Zbl

[26] B. Kruglikov, O. Morozov, “Integrable dispersionless PDEs in 4D, their symmetry pseudogroups and deformations”, Lett. Math. Phys., 105:12 (2015), 1703–1723, arXiv: 1410.7104 | DOI | MR | Zbl

[27] H. Baran, I. S. Krasil'shchik, O. I. Morozov, P. Vojčák, “Five-dimensional Lax-integrable equation, its reductions and recursion operator”, Lobachevskii J. Math., 36:3 (2015), 225–233 | DOI | MR

[28] O. I. Morozov, M. V. Pavlov, “Bäcklund transformations between four Lax-integrable 3D equations”, J. Nonlinear Math. Phys., 24:4 (2017), 465–468, arXiv: 1611.04036 | DOI | MR

[29] H. Baran, M. Marvan, Jets. A software for differential calculus on Jet spaces and diffieties http://jets.math.slu.cz