@article{TMF_2018_196_2_a0,
author = {H. Baran and I. S. Krasil'shchik and O. I. Morozov and P. Voj\v{c}\'ak},
title = {Nonlocal symmetries of integrable linearly degenerate equations: {A~comparative} study},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {169--192},
year = {2018},
volume = {196},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a0/}
}
TY - JOUR AU - H. Baran AU - I. S. Krasil'shchik AU - O. I. Morozov AU - P. Vojčák TI - Nonlocal symmetries of integrable linearly degenerate equations: A comparative study JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 169 EP - 192 VL - 196 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a0/ LA - ru ID - TMF_2018_196_2_a0 ER -
%0 Journal Article %A H. Baran %A I. S. Krasil'shchik %A O. I. Morozov %A P. Vojčák %T Nonlocal symmetries of integrable linearly degenerate equations: A comparative study %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 169-192 %V 196 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a0/ %G ru %F TMF_2018_196_2_a0
H. Baran; I. S. Krasil'shchik; O. I. Morozov; P. Vojčák. Nonlocal symmetries of integrable linearly degenerate equations: A comparative study. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 2, pp. 169-192. http://geodesic.mathdoc.fr/item/TMF_2018_196_2_a0/
[1] H. Baran, I. S. Krasil'shchik, O. I. Morozov, P. Vojčák, “Symmetry reductions and exact solutions of Lax integrable $3$-dimensional systems”, J. Nonlinear Math. Phys., 21:4 (2014), 643–671, arXiv: 1407.0246 | DOI | MR
[2] H. Baran, I. S. Krasil'shchik, O. I. Morozov, P. Vojčák, “Integrability properties of some equations obtained by symmetry reductions”, J. Nonlinear Math. Phys., 22:2 (2015), 210–232, arXiv: 1412.6461 | DOI | MR
[3] J. Gibbons, S. P. Tsarev, “Reductions of the Benney equations”, Phys. Lett. A, 211:1 (1996), 19–24 | DOI | MR | Zbl
[4] Kh. Baran, I. S. Krasilschik, O. I. Morozov, P. Voichak, “Nakrytiya i nelokalnye simmetrii uravnenii, integriruemykh po Laksu”, TMF, 188:3 (2016), 361–385, arXiv: 1507.00897 | DOI | DOI | MR | Zbl
[5] E. V. Ferapontov, J. Moss, “Linearly degenerate partial differential equations and quadratic line complexes”, Commun. Anal. Geom., 23:1 (2015), 91–127, arXiv: 1204.2777 | DOI | MR | Zbl
[6] A. V. Bocharov, A. M. Verbovetskii, S. V. Duzhin, A. V. Samokhin, Yu. N. Torkhov, N. G. Khorkova, V.N. Chetverikov, Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Ser. XX vek. Matematika i mekhanika, 9, eds. A. M. Vinogradov, I. S. Krasilschik, Faktorial Press, M., 2005 | MR | Zbl
[7] I. S. Krasil'shchik, A. M. Vinogradov, “Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations”, Acta Appl. Math., 15:1–2 (1989), 161–209 | DOI | MR | Zbl
[8] M. Marvan, “Another look on recursion operators”, Differential Geometry and Applications (Brno, August 28 – September 1, 1995), eds. J. Janyška, I. Kolář, J. Slovák, Masaryk Univ., Brno, 1996, 393–402 | MR | Zbl
[9] M. Błaszak, “Classical $R$-matrices on Poisson algebras and related dispersionless systems”, Phys. Lett. A, 297:3–4 (2002), 191–195 | DOI | MR
[10] V. Ovsienko, “Bi-Hamiltonian nature of the equation $u_{tx}=u_{xy}u_y-u_{yy}u_x$”, Adv. Pure Appl. Math., 1:1 (2010), 7–17 | DOI | MR | Zbl
[11] M. V. Pavlov, “The Kupershmidt hydrodynamics chains and lattices”, Internat. Math. Res. Not., 2006 (2006), 46987, 43 pp. | MR
[12] O. I. Morozov, “Recursion operators and nonlocal symmetries for integrable rmdKP and rdDym equations”, arXiv: 1202.2308
[13] M. Dunajski, “A class of Einstein–Weil spaces associated to an integrable system of hydrodynamic type”, J. Geom. Phys., 51:1 (2004), 126–137, arXiv: nlin/0311024 | DOI | MR | Zbl
[14] M. V. Pavlov, “Integrable hydrodynamic chains”, J. Math. Phys., 44:9 (2003), 4134–4156, arXiv: nlin/0301010 | DOI | MR | Zbl
[15] L. Martínez Alonso, A. B. Shabat, “Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type”, Phys. Lett. A, 299:4 (2002), 359–365, arXiv: nlin/0202008 | DOI | MR | Zbl
[16] L. Martines Alonso, A. B. Shabat, “Gidrodinamicheskie reduktsii i resheniya universalnoi ierarkhii”, TMF, 140:2 (2004), 216–229 | DOI | DOI | MR | Zbl
[17] O. I. Morozov, “A recursion operator for the universal hierarchy equation via Cartan's method of equivalence”, Cent. Eur. J. Math., 12:2 (2014), 271–283, arXiv: 1205.5748 | DOI | MR | Zbl
[18] V. E. Adler, A. B. Shabat, “Modelnoe uravnenie teorii solitov”, TMF, 153:1 (2007), 29–45 | DOI | DOI | MR | Zbl
[19] I. Zakharevich, Nonlinear wave equation, nonlinear Riemann problem, and the twistor transform of Veronese webs, arXiv: math-ph/0006001
[20] M. Dunajski, W. Kryński, “Einstein–Weyl geometry, dispersionless Hirota equation and Veronese webs”, Math. Proc. Cambridge Philos. Soc., 157:1 (2014), 139–150, arXiv: 1301.0621 | DOI | MR | Zbl
[21] M. Schlichenmaier, Krichever–Novikov Type Algebras. Theory and Applications, De Gruyter Studies in Mathematics, 53, De Gruyter, Berlin, 2014 | MR
[22] A. Sergyeyev, “A simple construction of recursion operators for multidimensional dispersionless integrable systems”, J. Math. Anal. Appl., 454:2 (2017), 468–480, arXiv: 1501.01955 | DOI
[23] A. A. Malykh, Y. Nutku, M. B. Sheftel, “Partner symmetries and non-invariant solutions of four-dimensional heavenly equations”, J. Phys. A.: Math. Theor., 37:30 (2004), 7527–7546, arXiv: math-ph/0403020 | DOI | MR
[24] M. Marvan, A. Sergyeyev, “Recursion operators for dispersionless integrable systems in any dimension”, Inverse Probl., 28:2 (2012), 025011, 12 pp. | DOI | MR | Zbl
[25] O. I. Morozov, A. Sergyeyev, “The four-dimensional Martínez Alonso–Shabat equation: reductions and nonlocal symmetries”, J. Geom. Phys., 85 (2014), 40–45, arXiv: 1401.7942 | DOI | MR | Zbl
[26] B. Kruglikov, O. Morozov, “Integrable dispersionless PDEs in 4D, their symmetry pseudogroups and deformations”, Lett. Math. Phys., 105:12 (2015), 1703–1723, arXiv: 1410.7104 | DOI | MR | Zbl
[27] H. Baran, I. S. Krasil'shchik, O. I. Morozov, P. Vojčák, “Five-dimensional Lax-integrable equation, its reductions and recursion operator”, Lobachevskii J. Math., 36:3 (2015), 225–233 | DOI | MR
[28] O. I. Morozov, M. V. Pavlov, “Bäcklund transformations between four Lax-integrable 3D equations”, J. Nonlinear Math. Phys., 24:4 (2017), 465–468, arXiv: 1611.04036 | DOI | MR
[29] H. Baran, M. Marvan, Jets. A software for differential calculus on Jet spaces and diffieties http://jets.math.slu.cz