Extremality of the translation-invariant Gibbs measures for the Potts model on the Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 117-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study translation-invariant Gibbs measures for the ferromagnetic Potts model with $q$ states on the Cayley tree of order $k$ and generalize some earlier results. We consider the question of the extremality of the known translation-invariant Gibbs measures for the Potts model with three states on the Cayley tree of order $k=3$.
Keywords: Cayley tree, Potts model, Gibbs measure, translation-invariant measure, measure extremality.
Mots-clés : configuration
@article{TMF_2018_196_1_a9,
     author = {U. A. Rozikov and R. M. Khakimov and F. Kh. Khaidarov},
     title = {Extremality of the~translation-invariant {Gibbs} measures for {the~Potts} model on {the~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {117--134},
     year = {2018},
     volume = {196},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a9/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - R. M. Khakimov
AU  - F. Kh. Khaidarov
TI  - Extremality of the translation-invariant Gibbs measures for the Potts model on the Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 117
EP  - 134
VL  - 196
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a9/
LA  - ru
ID  - TMF_2018_196_1_a9
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A R. M. Khakimov
%A F. Kh. Khaidarov
%T Extremality of the translation-invariant Gibbs measures for the Potts model on the Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 117-134
%V 196
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a9/
%G ru
%F TMF_2018_196_1_a9
U. A. Rozikov; R. M. Khakimov; F. Kh. Khaidarov. Extremality of the translation-invariant Gibbs measures for the Potts model on the Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 117-134. http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a9/

[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[2] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR

[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl

[4] P. M. Blekher, N. N. Ganikhodzhaev, “O chistykh fazakh modeli Izinga na reshetkakh Bete”, Teoriya veroyatn. i ee primen., 35:2 (1990), 220–230 | DOI | MR | Zbl

[5] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice”, J. Statist. Phys., 79:1–2 (1995), 473–482 | DOI | MR

[6] N. N. Ganikhodzhaev, “O chistykh fazakh ferromagnitnoi modeli Pottsa s tremya sostoyaniyami na reshetke Bete vtorogo poryadka”, TMF, 85:2 (1990), 163–175 | DOI | MR

[7] N. N. Ganikhodzhaev, “O chistykh fazakh ferromagnitnoi modeli Pottsa na reshetke Bete”, Dokl. AN RUz, 6–7 (1992), 4–7

[8] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR | Zbl

[9] N. N. Ganikhodjaev, U. A. Rozikov, “The Potts model with countable set of spin values on a Cayley tree”, Lett. Math. Phys., 75:2 (2006), 99–109 | DOI | MR | Zbl

[10] U. A. Rozikov, R. M. Khakimov, “Periodicheskie mery Gibbsa dlya modeli Pottsa na dereve Keli”, TMF, 175:2 (2013), 300–312 | DOI | DOI | MR | Zbl

[11] R. M. Khakimov, “O suschestvovanii periodicheskikh mer Gibbsa dlya modeli Pottsa na dereve Keli”, Uzbek. matem. zhurn., 2014, no. 3, 134–142

[12] R. M. Khakimov, “New periodic Gibbs measures for $q$-state Potts model on a Cayley tree [Novye periodicheskie mery Gibbsa dlya modeli Pottsa s $q$-sostoyaniyami na dereve Keli]”, Zhurn. SFU. Ser. Matem. i fiz., 7:3 (2014), 297–304 | MR

[13] C. Külske, U. A. Rozikov, R. M. Khakimov, “Description of all translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree”, J. Statist. Phys., 156:1 (2014), 189–200, arXiv: 1310.6220 | DOI | MR | Zbl

[14] C. Külske, U. A. Rozikov, “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures and Algorithms, 50:4 (2017), 636–678, arXiv: 1403.5775 | DOI | MR

[15] R. M. Khakimov, F. Kh. Khaidarov, “Translyatsionno-invariantnye i periodicheskie mery Gibbsa dlya modeli Pottsa na dereve Keli”, TMF, 189:2 (2016), 286–295 | DOI | DOI | MR

[16] C. Külske, M. Formentin, “A symmetric entropy bound on the non-reconstruction regime of Markov chains on Galton–Watson trees”, Electron. Commun. Probab., 14, paper no. 57 (2009), 587–596 | DOI | MR | Zbl

[17] H. Kesten, B. P. Stigum, “Additional limit theorem for indecomposable multi-dimensional Galton–Watson processes”, Ann. Math. Statist., 37:6 (1966), 1463–1481 | DOI | MR

[18] E. Mossel, “Survey: information flow on trees”, Graphs, Morphisms and Statistical Physics (Piscataway, NJ, March 19–21, 2001), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 63, eds. J. Nes̆etril, P. Winkler, AMS, Providence, RI, 2004, 155–170 | DOI | MR

[19] F. Martinelli, A. Sinclair, D. Weitz, “Fast mixing for independent sets, coloring, and other models on trees”, Random Structures and Algoritms, 31:2 (2007), 134–172 | DOI | MR