Binary representation of coordinate and momentum in quantum mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 70-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To simulate a quantum system with continuous degrees of freedom on a quantum computer based on qubits, it is necessary to reduce continuous observables (primarily coordinates and momenta) to binary observables. We consider this problem based on expanding quantum observables in series in powers of two, analogous to the binary representation of real numbers. The coefficients of the series (“digits”) are therefore orthogonal projectors. We investigate the corresponding quantum mechanical operators and the relations between them and show that the binary expansion of quantum observables automatically leads to renormalization of some divergent integrals and series (giving them finite values). The binary decomposition of the quantum observables automatically leads to renormalization (assignment of finite values) of some divergent integrals and series.
Keywords: quantum computing, qubit, binary expansion, renormalization.
@article{TMF_2018_196_1_a6,
     author = {M. G. Ivanov},
     title = {Binary representation of coordinate and momentum in quantum mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {70--87},
     year = {2018},
     volume = {196},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a6/}
}
TY  - JOUR
AU  - M. G. Ivanov
TI  - Binary representation of coordinate and momentum in quantum mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 70
EP  - 87
VL  - 196
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a6/
LA  - ru
ID  - TMF_2018_196_1_a6
ER  - 
%0 Journal Article
%A M. G. Ivanov
%T Binary representation of coordinate and momentum in quantum mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 70-87
%V 196
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a6/
%G ru
%F TMF_2018_196_1_a6
M. G. Ivanov. Binary representation of coordinate and momentum in quantum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 70-87. http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a6/

[1] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, D. Smith-Tone, Report on Post-Quantum Cryptography, National Institute of Standards and Technology Internal Report 8105, NIST, Gaithersburg, MD, 2016 | DOI

[2] R. P. Feynman, “Simulation physics with computers”, Internat. J. Theor. Phys., 21:6–7 (1982), 467–488 | DOI | MR

[3] B. M. Boghosian, W. Taylor, “Simulating quantum mechanics on a quantum computer”, Phys. D, 120:1–2 (1998), 30–42, arXiv: quant-ph/9701019 | DOI | MR

[4] M. Bhatia, P. N. Swamy, “Elementary quantum mechanics in a space-time lattice”, Internat. J. Theoret. Phys., 50:6 (2011), 1687–1698, arXiv: 1011.2544 | DOI | MR

[5] G. Veil, Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR | Zbl

[6] J. Schwinger, “Unitary operator bases”, Proc. Nat. Acad. Sci. USA, 46:4 (1960), 570–579 | DOI | MR

[7] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | DOI | MR | MR | Zbl

[8] A. Avizienis, “Signed-digit number representations for fast parallel arithmetic”, IRE Transactions on Electronic Computers, EC-10:3 (1961), 389–400 | DOI | MR

[9] C. Y. Chow, J. E. Robertson, “Logical design of a redundant binary adder”, Proceedings of 4th IEEE Symposium on Computer Arithmetic (ARITH) (Santa Monica, California, October 25–27, 1978), IEEE, New York, 1978, 109–115 | DOI

[10] M. G. Ivanov, “Krivizna fazovogo prostranstva”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 1(30) (2013), 361–368 | DOI

[11] M. G. Ivanov, “O formulirovke kvantovoi mekhaniki s dinamicheskim vremenem”, Izbrannye voprosy matematicheskoi fiziki i analiza, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Vasiliya Sergeevicha Vladimirova, Tr. MIAN, 285, MAIK “Nauka/Interperiodika”, M., 2014, 154–165 | DOI | DOI

[12] M. G. Ivanov, Kak ponimat kvantovuyu mekhaniku, RKhD, M., Izhevsk, 2015

[13] M. G. Ivanov, “O edinstvennosti kvantovoi teorii izmerenii dlya tochnykh izmerenii s diskretnym spektrom”, Tr. MFTI, 8:1(29) (2016), 170–178