@article{TMF_2018_196_1_a4,
author = {V. S. Oganesyan},
title = {The~AKNS hierarchy and finite-gap {Schr\"odinger} potentials},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {50--63},
year = {2018},
volume = {196},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a4/}
}
V. S. Oganesyan. The AKNS hierarchy and finite-gap Schrödinger potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 50-63. http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a4/
[1] G. Wallenberg, “Über die Vertauschbarkeit homogener linearer Differentialausdrücke”, Arch. Math. Phys. (3), 4 (1903), 252–268 | Zbl
[2] J. Schur, “Über vertauschbare lineare Differentialausdrücke”, Sitzungsber. Berl. Math. Ges., 4 (1905), 2–8 | Zbl
[3] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. London Math. Soc., 21 (1923), 420–440 | DOI | MR
[4] P. G. Grinevich, “Vektornyi rang kommutiruyuschikh matrichnykh differentsialnykh operatorov. Dokazatelstvo kriteriya S. P. Novikova”, Izv. AN SSSR. Ser. matem., 50:3 (1986), 458–478 | DOI | MR | Zbl
[5] J. Dixmier, “Sur les algèbres de Weyl”, Bull. Soc. Math. France, 96 (1968), 209–242 | DOI | MR
[6] I. M. Krichever, “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | DOI | MR | Zbl
[7] I. M. Krichever, “Kommutativnye koltsa obyknovennykh lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 12:3 (1978), 20–31 | DOI | MR | Zbl
[8] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6(216) (1980), 47–68 | DOI | MR | Zbl
[9] O. I. Mokhov, “Kommutiruyuschie obyknovennye differentsialnye operatory ranga 3, otvechayuschie ellipticheskoi krivoi”, UMN, 37:4(226) (1982), 169–170 | DOI | MR | Zbl
[10] O. I. Mokhov, “Kommutiruyuschie differentsialnye operatory ranga 3 i nelineinye uravneniya”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1291–1315 | DOI | MR | Zbl
[11] A. E. Mironov, “Self-adjoint commuting ordinary differential operators”, Invent. Math., 197:2 (2014), 417–431 | DOI
[12] A. E. Mironov, “Periodic and rapid decay rank two self-adjoint commuting differential operators”, Topology, Geometry, Integrable Systems, and Mathematical Physics. Novikov's Seminar 2012–2014, American Mathematical Society Translations: Series 2, 234, eds. V. M. Buchstaber, B. A. Dubrovin, I. M. Krichever, AMS, Providence, RI, 2014, 309–322 | DOI | MR
[13] V. S. Oganesyan, “Kommutiruyuschie differentsialnye operatory ranga 2 s polinomialnymi koeffitsientami”, Funkts. analiz i ego pril., 50:1 (2016), 67–75 | DOI | DOI | MR
[14] V. Oganesyan, “Explicit characterization of some commuting differential operators of rank 2”, Int. Math. Res. Not., 2017:6 (2017), 1623–1640 | DOI | MR
[15] V. S. Oganesyan, “Obschie sobstvennye funktsii kommutiruyuschikh differentsialnykh operatorov ranga $2$”, Matem. zametki, 99:2 (2016), 283–287 | DOI | DOI | MR
[16] V. N. Davletshina, “Kommutiruyuschie differentsialnye operatory ranga dva s trigonometricheskimi koeffitsientami”, Sib. matem. zhurn., 56:3 (2015), 513–519 | DOI | DOI | MR
[17] O. I. Mokhov, “O kommutativnykh podalgebrakh algebr Veilya, svyazannykh s kommutiruyuschimi operatorami proizvolnogo ranga i roda”, Matem. zametki, 94:2 (2013), 314–316 | DOI | DOI | MR | Zbl
[18] O. I. Mokhov, “Commuting ordinary differential operators of arbitrary genus and arbitrary rank with polynomial coefficients”, Topology, Geometry, Integrable Systems, and Mathematical Physics. Novikov's Seminar 2012–2014, American Mathematical Society Translations: Series 2, 234, eds. V. M. Buchstaber, B. A. Dubrovin, I. M. Krichever, AMS, Providence, RI, 2014, 323–336 | DOI | MR
[19] A. E. Mironov, A. B. Zheglov, “Commuting ordinary differential operators with polynomial coefficients and automorphisms of the first Weyl algebra”, Int. Math. Res. Not., 2016:10 (2016), 2974–2993 | DOI | MR
[20] V. Oganesyan, “Matrix commuting differential operators of rank $2$”, Int. Math. Res. Not., 2017:6 (2017), 1623–1640 | DOI | MR
[21] A. O. Smirnov, “Finite-gap elliptic solutions of the KdV equation”, Acta Appl. Math., 36:1–2 (1994), 125–166 | DOI | MR
[22] A. O. Smirnov, “Veschestvennye konechnozonnye regulyarnye resheniya uravneniya Kaupa–Bussineska”, TMF, 66:1 (1986), 30–46 | DOI | MR | Zbl
[23] A. O. Smirnov, “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza”, Matem. sb., 185:8 (1994), 103–114 | DOI | MR | Zbl
[24] B. A. Dubrovin, “Vpolne integriruemye gamiltonovy sistemy, svyazannye s matrichnymi operatorami, i abelevy mnogoobraziya”, Funkts. analiz i ego pril., 11:4 (1977), 28–41 | DOI | MR | Zbl
[25] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortevega–\allowbreakde Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1(187) (1976), 55–136 | DOI | MR | Zbl
[26] F. Gesztesy, R. Weikard, “A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy”, Acta Math., 181:1 (1998), 63–108 | DOI | MR
[27] R. Weikard, “On commuting matrix differential operators”, New York J. Math., 8 (2002), 9–30 | MR
[28] E. L. Ince, Ordinary differential equations, Dover, New York, 1956 | MR | Zbl
[29] E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, Krieger, Malabar, FL, 1984 | MR
[30] F. Gesztesy, K. Unterkofler, R. Weikard, “An explicit characterization of Calogero–Moser systems”, Trans. Amer. Math. Soc., 358:2 (2006), 603–656 | DOI | MR