@article{TMF_2018_196_1_a3,
author = {S. V. Zakharov},
title = {Asymptotic solution of the~multidimensional {Burgers} equation near a~singularity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {42--49},
year = {2018},
volume = {196},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a3/}
}
S. V. Zakharov. Asymptotic solution of the multidimensional Burgers equation near a singularity. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 42-49. http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a3/
[1] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | MR | Zbl
[2] O. V. Rudenko, S. I. Soluyan, Teoreticheskie osnovy nelineinoi akustiki, Nauka, M., 1975 | MR | MR | Zbl
[3] S. N. Gurbatov, O. V. Rudenko, A. I. Saichev, Volny i struktury v nelineinykh sredakh bez dispersii. Prilozheniya k nelineinoi akustike, Fizmatlit, M., 2008 | MR | Zbl
[4] F. Bernardeau, P. Valageas, “Merging and fragmentation in the Burgers dynamics”, Phys. Rev. E, 82:1 (2010), 016311, 20 pp., arXiv: 0912.3603 | DOI | MR
[5] S. N. Gurbatov, A. I. Saichev, S. F. Shandarin, “Krupnomasshtabnaya struktura Vselennoi. Priblizhenie Zeldovicha i model slipaniya”, UFN, 182:3 (2012), 233–261, arXiv: astro-ph/9311075 | DOI
[6] A. L. Melott, S. F. Shandarin, D. H. Weinberg, “A test of the adhesion approximation for gravitational clustering”, Astrophys. J., 428:1 (1994), 28–34, arXiv: astro-ph/9311075 | DOI
[7] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR | MR
[8] I. A. Bogaevskii, “Perestroiki osobennostei funktsii minimuma i bifurkatsii udarnykh voln uravneniya Byurgersa s ischezayuschei vyazkostyu”, Algebra i analiz, 1:4 (1989), 1–16 | MR | Zbl
[9] I. A. Bogaevskii, “Razryvnye gradientnye differentsialnye uravneniya i traektorii v variatsionnom ischislenii”, Matem. sb., 197:12 (2006), 11–42 | DOI | DOI | MR | Zbl
[10] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[11] S. V. Zakharov, “Singulyarnye asimptotiki v zadache Koshi dlya parabolicheskogo uravneniya s malym parametrom”, Tr. IMM UrO RAN, 21:1 (2015), 97–104 | MR
[12] S. V. Zakharov, “Osobennosti $A$ i $B$ tipov v asimptoticheskom analize reshenii parabolicheskogo uravneniya”, Funkts. analiz i ego pril., 49:4 (2015), 82–85 | DOI | DOI
[13] S. V. Zakharov, “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s bolshim nachalnym gradientom i maloi vyazkostyu”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 699–706 | DOI | MR
[14] T. Hollowood, J. L. Miramontes, J. S. Guillén, “Generalized integrability and two-dimensional gravitation”, TMF, 95:2 (1993), 258–275 | DOI | MR | Zbl
[15] J. Schnittger, U. Ellwanger, “Nonperturbative conditions for local Weyl invariance on a curved world sheet”, TMF, 95:2 (1993), 361–384 | DOI | MR
[16] S. Kachru, X. Liu, M. Mulligan, “Gravity duals of Lifshitz-like fixed points”, Phys. Rev. D, 78:10 (2008), 106005, 8 pp., arXiv: 0808.1725 | DOI | MR
[17] I. Arav, S. Chapman, Y. Oz, “Lifshitz scale anomalies”, JHEP, 02 (2015), 078, 58 pp., arXiv: 1410.5831 | DOI | MR
[18] S. V. Zakharov, “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s dvumya malymi parametrami”, Dokl. RAN, 422:6 (2008), 733–734 | MR
[19] S. V. Zakharov, “Asimptoticheskoe vychislenie raspredeleniya tepla na ploskosti”, Tr. IMM UrO RAN, 22, no. 1, 2016, 93–99 | MR
[20] K. Stewartson, “On almost rigid rotations. Part 2”, J. Fluid Mech., 26 (1966), 131–144 | DOI
[21] F. H. Busse, “On Howard's upper bound for heat transport by turbulent convection”, J. Fluid Mech., 37:3 (1969), 457–477 | DOI