Asymptotic solution of the multidimensional Burgers equation near a singularity
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 42-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cauchy problem for the multidimensional Burgers equation with a small dissipation parameter and use the matching method to construct an asymptotic solution near the singularity determined by the vector field structure at the initial instant. The method that we use allows tracing the evolution of the solution with a hierarchy of differently scaled structures and giving a rigorous mathematical definition of the asymptotic solution in the leading approximation. We discuss the relation of the considered problem to different models in fundamental and applied physics.
Keywords: multidimensional Burgers equation, Cauchy problem, asymptotics.
@article{TMF_2018_196_1_a3,
     author = {S. V. Zakharov},
     title = {Asymptotic solution of the~multidimensional {Burgers} equation near a~singularity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {42--49},
     year = {2018},
     volume = {196},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a3/}
}
TY  - JOUR
AU  - S. V. Zakharov
TI  - Asymptotic solution of the multidimensional Burgers equation near a singularity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 42
EP  - 49
VL  - 196
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a3/
LA  - ru
ID  - TMF_2018_196_1_a3
ER  - 
%0 Journal Article
%A S. V. Zakharov
%T Asymptotic solution of the multidimensional Burgers equation near a singularity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 42-49
%V 196
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a3/
%G ru
%F TMF_2018_196_1_a3
S. V. Zakharov. Asymptotic solution of the multidimensional Burgers equation near a singularity. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 42-49. http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a3/

[1] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | MR | Zbl

[2] O. V. Rudenko, S. I. Soluyan, Teoreticheskie osnovy nelineinoi akustiki, Nauka, M., 1975 | MR | MR | Zbl

[3] S. N. Gurbatov, O. V. Rudenko, A. I. Saichev, Volny i struktury v nelineinykh sredakh bez dispersii. Prilozheniya k nelineinoi akustike, Fizmatlit, M., 2008 | MR | Zbl

[4] F. Bernardeau, P. Valageas, “Merging and fragmentation in the Burgers dynamics”, Phys. Rev. E, 82:1 (2010), 016311, 20 pp., arXiv: 0912.3603 | DOI | MR

[5] S. N. Gurbatov, A. I. Saichev, S. F. Shandarin, “Krupnomasshtabnaya struktura Vselennoi. Priblizhenie Zeldovicha i model slipaniya”, UFN, 182:3 (2012), 233–261, arXiv: astro-ph/9311075 | DOI

[6] A. L. Melott, S. F. Shandarin, D. H. Weinberg, “A test of the adhesion approximation for gravitational clustering”, Astrophys. J., 428:1 (1994), 28–34, arXiv: astro-ph/9311075 | DOI

[7] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR | MR

[8] I. A. Bogaevskii, “Perestroiki osobennostei funktsii minimuma i bifurkatsii udarnykh voln uravneniya Byurgersa s ischezayuschei vyazkostyu”, Algebra i analiz, 1:4 (1989), 1–16 | MR | Zbl

[9] I. A. Bogaevskii, “Razryvnye gradientnye differentsialnye uravneniya i traektorii v variatsionnom ischislenii”, Matem. sb., 197:12 (2006), 11–42 | DOI | DOI | MR | Zbl

[10] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[11] S. V. Zakharov, “Singulyarnye asimptotiki v zadache Koshi dlya parabolicheskogo uravneniya s malym parametrom”, Tr. IMM UrO RAN, 21:1 (2015), 97–104 | MR

[12] S. V. Zakharov, “Osobennosti $A$ i $B$ tipov v asimptoticheskom analize reshenii parabolicheskogo uravneniya”, Funkts. analiz i ego pril., 49:4 (2015), 82–85 | DOI | DOI

[13] S. V. Zakharov, “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s bolshim nachalnym gradientom i maloi vyazkostyu”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 699–706 | DOI | MR

[14] T. Hollowood, J. L. Miramontes, J. S. Guillén, “Generalized integrability and two-dimensional gravitation”, TMF, 95:2 (1993), 258–275 | DOI | MR | Zbl

[15] J. Schnittger, U. Ellwanger, “Nonperturbative conditions for local Weyl invariance on a curved world sheet”, TMF, 95:2 (1993), 361–384 | DOI | MR

[16] S. Kachru, X. Liu, M. Mulligan, “Gravity duals of Lifshitz-like fixed points”, Phys. Rev. D, 78:10 (2008), 106005, 8 pp., arXiv: 0808.1725 | DOI | MR

[17] I. Arav, S. Chapman, Y. Oz, “Lifshitz scale anomalies”, JHEP, 02 (2015), 078, 58 pp., arXiv: 1410.5831 | DOI | MR

[18] S. V. Zakharov, “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s dvumya malymi parametrami”, Dokl. RAN, 422:6 (2008), 733–734 | MR

[19] S. V. Zakharov, “Asimptoticheskoe vychislenie raspredeleniya tepla na ploskosti”, Tr. IMM UrO RAN, 22, no. 1, 2016, 93–99 | MR

[20] K. Stewartson, “On almost rigid rotations. Part 2”, J. Fluid Mech., 26 (1966), 131–144 | DOI

[21] F. H. Busse, “On Howard's upper bound for heat transport by turbulent convection”, J. Fluid Mech., 37:3 (1969), 457–477 | DOI