Asymptotic solution of the~multidimensional Burgers equation near a~singularity
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 42-49

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for the multidimensional Burgers equation with a small dissipation parameter and use the matching method to construct an asymptotic solution near the singularity determined by the vector field structure at the initial instant. The method that we use allows tracing the evolution of the solution with a hierarchy of differently scaled structures and giving a rigorous mathematical definition of the asymptotic solution in the leading approximation. We discuss the relation of the considered problem to different models in fundamental and applied physics.
Keywords: multidimensional Burgers equation, Cauchy problem, asymptotics.
@article{TMF_2018_196_1_a3,
     author = {S. V. Zakharov},
     title = {Asymptotic solution of the~multidimensional {Burgers} equation near a~singularity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {42--49},
     publisher = {mathdoc},
     volume = {196},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a3/}
}
TY  - JOUR
AU  - S. V. Zakharov
TI  - Asymptotic solution of the~multidimensional Burgers equation near a~singularity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 42
EP  - 49
VL  - 196
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a3/
LA  - ru
ID  - TMF_2018_196_1_a3
ER  - 
%0 Journal Article
%A S. V. Zakharov
%T Asymptotic solution of the~multidimensional Burgers equation near a~singularity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 42-49
%V 196
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a3/
%G ru
%F TMF_2018_196_1_a3
S. V. Zakharov. Asymptotic solution of the~multidimensional Burgers equation near a~singularity. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 42-49. http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a3/