New formulas related to analytic number theory and their applications in statistical physics
Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 161-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Since the deep paper by Bohr and Kalckar in 1938, it has been known that the Ramanujan formula in number theory is related to statistical physics and nuclear theory. From the early 1970s, there have been attempts to generalize number theory from the space of integers to the space of rational numbers, i.e., to construct a so-called analytic number theory. In statistical physics, we consider parameters such as the volume $V$, temperature $T$, and chemical potential $\mu$, which are not integers and are consequently related to analytic number theory. This relation to physical concepts leads us to seek new relations in analytic number theory, and these relations turn out to be useful in statistical physics.
Keywords: analytic number theory, Bose–Einstein distribution, self-consistent equation, specific energy jump.
Mots-clés : Fermi–Dirac distribution, Gentile distribution
@article{TMF_2018_196_1_a11,
     author = {V. P. Maslov},
     title = {New formulas related to analytic number theory and their applications in statistical physics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {161--166},
     year = {2018},
     volume = {196},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a11/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - New formulas related to analytic number theory and their applications in statistical physics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 161
EP  - 166
VL  - 196
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a11/
LA  - ru
ID  - TMF_2018_196_1_a11
ER  - 
%0 Journal Article
%A V. P. Maslov
%T New formulas related to analytic number theory and their applications in statistical physics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 161-166
%V 196
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a11/
%G ru
%F TMF_2018_196_1_a11
V. P. Maslov. New formulas related to analytic number theory and their applications in statistical physics. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 161-166. http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a11/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 5, Statisticheskaya fizika. Chast I, Nauka, M., 1976 | MR | Zbl

[2] A. G. Postnikov, Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971 | MR

[3] N. Bor, F. Kalkar, “O prevrascheniyakh atomnykh yader, vyzvannykh stolknoveniyami s materialnymi chastitsami”, UFN, 20:3 (1938), 317–340 | DOI

[4] V. P. Maslov, “Dvukhflyuidnaya kartina nadkriticheskikh yavlenii”, TMF, 180:3 (2014), 394–432 | DOI | DOI | MR | Zbl

[5] W.-S. Dai, M. Xie, “Gentile statistics with a large maximum occupation number”, Ann. Phys., 309:2 (2004), 295–305 | DOI | MR | Zbl

[6] J. S. Bell, “On the Einstein Podolsky Rosen paradox”, Physics, 1:3 (1964), 195–200 | DOI | MR

[7] V. P. Maslov, “Rotation of a neutron in the coat of Helium-5 as a classical particle for a relatively large value of the hidden parameter $t_{\mathrm{meas}}$”, Math. Notes, 103:1 (2018), 67–74 | DOI | MR

[8] V. P. Maslov, “Statistical transition of the Bose gas to the Fermi gas”, Math. Notes, 103:6 (2018), 3–9 | DOI