Mots-clés : module, variation bicomplex.
@article{TMF_2018_196_1_a0,
author = {V. V. Zharinov},
title = {Analysis in differential algebras and modules},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--21},
year = {2018},
volume = {196},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a0/}
}
V. V. Zharinov. Analysis in differential algebras and modules. Teoretičeskaâ i matematičeskaâ fizika, Tome 196 (2018) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/TMF_2018_196_1_a0/
[1] J. F. Ritt, Differential Algebra, American Mathematical Society Colloquium Publications, 33, AMS, New York, 1950 | MR
[2] E. R. Kolchin, Differential Algebra and Algebraic Groups, Acad. Press, New York, 1973 | MR
[3] I. Kaplansky, An Introduction to Differential Algebra, Hermann, Paris, 1957 | MR | Zbl
[4] S. Maklein, Gomologiya, M., Mir, 1966 | MR | MR | Zbl | Zbl
[5] R. Godeman, Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961 | MR | MR | Zbl
[6] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | MR | Zbl | Zbl
[7] V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations, Series on Soviet and East European Mathematics, 9, World Sci., Singapore–New Jersey–London–Hong Kong, 1992 | MR
[8] A. M. Vinogradov, “Odna spektralnaya posledovatelnost, svyazannaya s nelineinym differentsialnym uravneniem, algebro-geometricheskie osnovaniya lagranzhevoi teorii polya so svyazyami”, Dokl. AN SSSR, 238:5 (1978), 1028–1031 | MR | Zbl
[9] T. Tsujishita, “On variation bicomplexes associated to differential equations”, Osaka J. Math., 19:2 (1982), 311–363 | MR | Zbl
[10] I. M. Anderson, The variational bicomplex, Dept. Math., Utah State University, Logan, UT, 2004
[11] V. V. Zharinov, “On differentiations in differential algebras”, Integral Transform. Spec. Funct., 4:1–2 (1996), 163–180 | DOI | MR
[12] V. V. Zharinov, “Formalnyi kompleks de Rama”, TMF, 174:2 (2013), 256–271 | DOI | MR | Zbl
[13] V. V. Zharinov, “Algebraicheskii vzglyad na kalibrovochnye teorii”, TMF, 180:2 (2014), 217–233 | DOI | MR
[14] V. V. Zharinov, “Analiz v algebrakh i modulyakh”, Tr. MIAN, 301 (2018), v pechati
[15] V. V. Zharinov, “O preobrazovanii Beklunda”, TMF, 189:3 (2016), 323–334 | DOI | DOI | MR
[16] V. V. Zharinov, “Algebro-geometricheskie osnovy matematicheskoi fiziki”, Lekts. kursy NOTs, 9 (2008), 3–209 | DOI | Zbl
[17] V. V. Zharinov, “Zakony sokhraneniya, differentsialnye tozhdestva i svyazi uravnenii v chastnykh proizvodnykh”, TMF, 185:2 (2015), 227–251 | DOI | MR
[18] V. V. Zharinov, “O gamiltonovykh operatorakh v differentsialnykh algebrakh”, TMF, 193:3 (2017), 369–380 | DOI | DOI | MR
[19] S. V. Kozyrev, A. A. Mironov, A. E. Teretenkov, I. V. Volovich, “Flows in nonequilibrium quantum systems and quantum photosynthesis”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:4 (2017), 1750021, 19 pp., arXiv: 1612.00213 | DOI | MR
[20] N. G. Marchuk, D. S. Shirokov, “General solutions of one class of field equations”, Rep. Math. Phys., 78:3 (2016), 305–326, arXiv: 1406.6665 | DOI | MR
[21] M. O. Katanaev, “Vektornye polya Killinga i odnorodnaya i izotropnaya vselennaya”, UFN, 186:7 (2016), 763–775 | DOI | DOI
[22] A. G. Sergeev, “Spinornaya geometriya Diraka i nekommutativnaya geometriya Konna”, Tr. MIAN, 298 (2017), 276–314 | DOI | DOI | MR
[23] A. S. Trushechkin, I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, Europhys. Lett., 113:3 (2016), 30005, 6 pp., arXiv: 1509.05754 | DOI
[24] A. K. Guschin, “O razreshimosti zadachi Dirikhle dlya neodnorodnogo ellipticheskogo uravneniya vtorogo poryadka”, Matem. sb., 206:10 (2015), 71–102 | DOI | DOI | MR | Zbl
[25] Yu. N. Drozhzhinov, “Mnogomernye tauberovy teoremy dlya obobschennykh funktsii”, UMN, 71:6(432) (2016), 99–154 | DOI | DOI | MR | Zbl
[26] I. V. Volovich, S. V. Kozyrev, “Manipulyatsiya sostoyaniyami vyrozhdennoi kvantovoi sistemy”, Tr. MIAN, 294 (2016), 256–267 | DOI | DOI | MR