Mots-clés : kernel, Lame coefficient
@article{TMF_2018_195_3_a8,
author = {D. K. Durdiev and A. A. Rakhmonov},
title = {Inverse problem for a~system of integro-differential equations for {SH} waves in a~visco-elastic porous medium: {Global} solvability},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {491--506},
year = {2018},
volume = {195},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a8/}
}
TY - JOUR AU - D. K. Durdiev AU - A. A. Rakhmonov TI - Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 491 EP - 506 VL - 195 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a8/ LA - ru ID - TMF_2018_195_3_a8 ER -
%0 Journal Article %A D. K. Durdiev %A A. A. Rakhmonov %T Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 491-506 %V 195 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a8/ %G ru %F TMF_2018_195_3_a8
D. K. Durdiev; A. A. Rakhmonov. Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 491-506. http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a8/
[1] V. N. Dorovskii, Yu. V. Perepechko, E. I. Romenskii, “Volnovye protsessy v nasyschennykh poristykh uprugodeformiruemykh sredakh”, Fizika goreniya i vzryva, 1993, no. 1, 100–111
[2] Kh. Kh. Imomnazarov, A. E Kholmurodov, “Pryamye i obratnye dinamicheskie zadachi dlya uravneniya SH voln v poristoi srede”, Vestn. NUUz. Ser. Mekh. Matem., 2006, no. 2, 86–91
[3] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 16:2 (2013), 72–82 | MR
[4] V. G. Yakhno, Obratnye zadachi dlya differentsialnykh uravnenii uprugosti, Nauka, Novosibirsk, 1990 | MR
[5] J. Janno, L. Von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[6] V. G. Romanov, “Otsenki ustoichivosti resheniya v zadache ob opredelenii yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 15:1 (2012), 86–98 | DOI | MR
[7] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavk. matem. zhurn., 17:4 (2015), 18–43
[8] D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zhurn. matem. fiz., anal., geom., 3:4 (2007), 411–423 | MR | Zbl
[9] D. K. Durdiev, Zh. Sh. Safarov, “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Matem. zametki, 97:6 (2015), 855–867 | DOI | DOI | MR
[10] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964
[11] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | MR