Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 491-506 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a system of hyperbolic integro-differential equations for SH waves in a visco-elastic porous medium. The inverse problem is to recover a kernel (memory) in the integral term of this system. We reduce this problem to solving a system of integral equations for the unknown functions. We apply the principle of contraction mappings to this system in the space of continuous functions with a weight norm. We prove the global unique solvability of the inverse problem and obtain a stability estimate of a solution of the inverse problem.
Keywords: integro-differential equation, inverse problem, Dirac delta function, hyperbolic equation, global solvability, weight function.
Mots-clés : kernel, Lame coefficient
@article{TMF_2018_195_3_a8,
     author = {D. K. Durdiev and A. A. Rakhmonov},
     title = {Inverse problem for a~system of integro-differential equations for {SH} waves in a~visco-elastic porous medium: {Global} solvability},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {491--506},
     year = {2018},
     volume = {195},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a8/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - A. A. Rakhmonov
TI  - Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 491
EP  - 506
VL  - 195
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a8/
LA  - ru
ID  - TMF_2018_195_3_a8
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A A. A. Rakhmonov
%T Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 491-506
%V 195
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a8/
%G ru
%F TMF_2018_195_3_a8
D. K. Durdiev; A. A. Rakhmonov. Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 491-506. http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a8/

[1] V. N. Dorovskii, Yu. V. Perepechko, E. I. Romenskii, “Volnovye protsessy v nasyschennykh poristykh uprugodeformiruemykh sredakh”, Fizika goreniya i vzryva, 1993, no. 1, 100–111

[2] Kh. Kh. Imomnazarov, A. E Kholmurodov, “Pryamye i obratnye dinamicheskie zadachi dlya uravneniya SH voln v poristoi srede”, Vestn. NUUz. Ser. Mekh. Matem., 2006, no. 2, 86–91

[3] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 16:2 (2013), 72–82 | MR

[4] V. G. Yakhno, Obratnye zadachi dlya differentsialnykh uravnenii uprugosti, Nauka, Novosibirsk, 1990 | MR

[5] J. Janno, L. Von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[6] V. G. Romanov, “Otsenki ustoichivosti resheniya v zadache ob opredelenii yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 15:1 (2012), 86–98 | DOI | MR

[7] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavk. matem. zhurn., 17:4 (2015), 18–43

[8] D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zhurn. matem. fiz., anal., geom., 3:4 (2007), 411–423 | MR | Zbl

[9] D. K. Durdiev, Zh. Sh. Safarov, “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Matem. zametki, 97:6 (2015), 855–867 | DOI | DOI | MR

[10] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[11] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004 | MR