Axisymmetric pure radiation space–time with causality-violating geodesics
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 483-490 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a stationary axisymmetric space–time admitting circular closed timelike geodesics everywhere within a finite region of space. The space–time is free from curvature divergence and is locally isometric to a nonvacuum pp-wave space–time. The matter–energy content is a pure radiation field and satisfies the null energy condition (NEC), and the metric is of type N in the Petrov classification scheme. Finally, we demonstrate the existence of timelike and null circular geodesic paths for this metric.
Keywords: nonvacuum solution, causality violation, radiation field, pp-wave.
@article{TMF_2018_195_3_a7,
     author = {F. Ahmed},
     title = {Axisymmetric pure radiation space{\textendash}time with causality-violating geodesics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {483--490},
     year = {2018},
     volume = {195},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a7/}
}
TY  - JOUR
AU  - F. Ahmed
TI  - Axisymmetric pure radiation space–time with causality-violating geodesics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 483
EP  - 490
VL  - 195
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a7/
LA  - ru
ID  - TMF_2018_195_3_a7
ER  - 
%0 Journal Article
%A F. Ahmed
%T Axisymmetric pure radiation space–time with causality-violating geodesics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 483-490
%V 195
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a7/
%G ru
%F TMF_2018_195_3_a7
F. Ahmed. Axisymmetric pure radiation space–time with causality-violating geodesics. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 483-490. http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a7/

[1] K. Gödel, “An example of a new type of cosmological solutions of Einstein's field equations of gravitation”, Rev. Modern Phys., 21:3 (1949), 447–450 | DOI | MR

[2] F. Ahmed, B. B. Hazarika, D. Sarma, “The anti-de Sitter spacetime as a time machine”, Eur. Phys. J. Plus, 131:7 (2016), 230, 3 pp. | DOI

[3] F. Ahmed, “Type N Einstein space time machine spacetime”, Ann. Phys., 382 (2017), 127–135 | DOI | MR

[4] F. Ahmed, “A stationary cylindrically symmetric spacetime which admits CTCs and its physical interpretation”, Ann. Phys., 386 (2017), 25–33 | DOI | MR

[5] F. Ahmed, “Closed timelike curves in type II non-vacuum spacetime”, Commun. Theor. Phys., 67:2 (2017), 189–191 | DOI

[6] F. Ahmed, “A type D non-vacuum spacetime with causality violating curves, and its physical interpretation”, Commun. Theor. Phys., 68:6 (2017), 735–740 | DOI

[7] I. D. Soares, “Inhomogeneous rotating universes with closed timelike geodesics of matter”, J. Math. Phys., 21:3 (1980), 521–525 | DOI

[8] B. R. Steadman, “Letter: Causality violation on van Stockum geodesics”, Gen. Rel. Grav., 35:9 (2003), 1721–1726 | DOI | MR

[9] W. B. Bonnor, B. R. Steadman, “Exact solutions of the Einstein–Maxwell equations with closed timelike curves”, Gen. Rel. Grav., 37:11 (2005), 1833–1844 | DOI | MR

[10] Ø. Grøn, S. Johannesen, “Closed timelike geodesics in a gas of cosmic strings”, New J. Phys., 10 (2008), 103025, 17 pp. | DOI | MR

[11] O. Grøn, S. Johannesen, “A spacetime with closed timelike geodesics everywhere”, Nuovo Cimento B, 125:10 (2010), 1215–1221 | DOI | MR

[12] F. Ahmed, “Cylindrically symmetric pure radiation space-time and closed timelike geodesics”, Progr. Theor. Exp. Phys., 2017:4 (2017), 043E02, 12 pp. | DOI | MR

[13] M. S. Morris, K. S. Thorne, U. Yurtsever, “Wormholes, time machines, and the weak energy condition”, Phys. Rev. Lett., 61:13 (1988), 1446–1449 | DOI

[14] M. S. Morris, K. S. Thorne, “Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity”, Amer. J. Phys., 56:3 (1988), 395–412 | DOI | MR

[15] F. Ahmed, “Gravitational collapse of type N spacetime, the naked singularity, and causality violation”, Progr. Theor. Exp. Phys., 2017:8 (2017), 083E03, 12 pp. ; “Cylindrically symmetric, asymptotically flat, Petrov type D spacetimewith a naked curvature singularity and matter collapse”, Adv. High Energy Phys., 2017 (2017), 7943649 ; “Axially symmetric null dust spacetime, naked singularity, and cosmictime machine”, 3587018 | DOI | DOI | DOI

[16] J. Carot, J. M. M. Senovilla, R. Vera, “On the definition of cylindrical symmetry”, Class. Quantum Grav., 16:9 (1999), 3025–3034 | DOI | MR

[17] A. Barnes, “A comment on a paper by Carot et al.”, Class. Quantum Grav., 17:13 (2000), 2605–2609 | DOI | MR

[18] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions to Einstein's Field Equation, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR

[19] S. Chandrasekar, Matematicheskaya teoriya chernykh dyr, Mir, M., 1986 | MR | Zbl

[20] P. Collas, D. Klein, “Letter: Frame dragging anomalies for rotating bodies”, Gen. Rel. Grav., 36:5 (2004), 1197–1206 | DOI | MR

[21] T.-M. He, Y.-J. Wang, “Frame dragging in the field of Kerr family”, Chinese Phys., 15:1 (2006), 232–234 | DOI

[22] H. W. Brinkmann, “Einstein spaces which are mapped conformally on each other”, Math. Ann., 94:1 (1925), 119–145 | DOI | MR