Four-parameter $1/r^2$ singular short-range potential with rich bound states and a resonance spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 422-436
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the tridiagonal representation approach to enlarge the class of exactly solvable quantum systems. For this, we use a square-integrable basis in which the matrix representation of the wave operator is tridiagonal. In this case, the wave equation becomes a three-term recurrence relation for the expansion coefficients of the wave function with a solution in terms of orthogonal polynomials that is equivalent to a solution of the original problem. We obtain S-wave bound states for a new four-parameter potential with a $1/r^2$ singularity but short-range, which has an elaborate configuration structure and rich spectral properties. A particle scattered by this potential must overcome a barrier and can then be trapped in the potential valley in a resonance or bound state. Using complex rotation, we demonstrate the rich spectral properties of the potential in the case of a nonzero angular momentum and show how this structure varies with the parameters of the potential.
Keywords: $1/r^2$ singular potential, tridiagonal representation, recurrence relation, parameter spectrum, bound state, resonance.
@article{TMF_2018_195_3_a4,
     author = {A. D. Alhaidari},
     title = {Four-parameter $1/r^2$ singular short-range potential with rich bound states and a~resonance spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {422--436},
     year = {2018},
     volume = {195},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/}
}
TY  - JOUR
AU  - A. D. Alhaidari
TI  - Four-parameter $1/r^2$ singular short-range potential with rich bound states and a resonance spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 422
EP  - 436
VL  - 195
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/
LA  - ru
ID  - TMF_2018_195_3_a4
ER  - 
%0 Journal Article
%A A. D. Alhaidari
%T Four-parameter $1/r^2$ singular short-range potential with rich bound states and a resonance spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 422-436
%V 195
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/
%G ru
%F TMF_2018_195_3_a4
A. D. Alhaidari. Four-parameter $1/r^2$ singular short-range potential with rich bound states and a resonance spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 422-436. http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/

[1] G. A. Natanzon, “Obschie svoistva potentsialov, dlya kotorykh uravnenie Shredingera razreshimo v gipergeometricheskikh funktsiyakh”, TMF, 38:2 (1979), 219–229 | DOI | MR | Zbl

[2] R. De, R. Dutt, U. Sukhatme, “Mapping of shape invariant potentials under point canonical transformations”, J. Phys. A: Math. Gen., 25:13 (1992), L843–L850 | DOI | MR

[3] A. M. Ishkhanyan, “Potentsialy, dlya kotorykh razreshimo uravnenie Shredingera”, TMF, 188:1 (2016), 20–35 | DOI | DOI | MR

[4] A. D. Alhaidari, “An extended class of $L^2$-series solutions of the wave equation”, Ann. Phys., 317:1 (2005), 152–174 | DOI | MR

[5] A. D. Alhaidari, “Analytic solution of the wave equation for an electron in the field of a molecule with an electric dipole moment”, Ann. Phys., 323:7 (2008), 1709–1728 | DOI | MR

[6] A. D. Alhaidari, H. Bahlouli, “Extending the class of solvable potentials: I. The infinite potential well with a sinusoidal bottom”, J. Math. Phys., 49:8 (2008), 082102, 13 pp. | DOI | MR

[7] A. D. Alhaidari, “Extending the class of solvable potentials: II. Screened Coulomb potential with a barrier”, Phys. Scr., 81:2 (2010), 025013, 12 pp. | DOI

[8] H. Bahlouli, A. D. Alhaidari, “Extending the class of solvable potentials: III. The hyperbolic single wave”, Phys. Scr., 81:2 (2010), 025008, 7 pp. | DOI

[9] A. D. Alhaidari, “Solution of the nonrelativistic wave equation using the tridiagonal representation approach”, J. Math. Phys., 58:7 (2017), 072104, 37 pp. | DOI | MR

[10] R. Koekoek, R. F. Swarttouw, “The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogues”, Reports of the Faculty of Technical Mathematics and Informatics, Number 98-17, Delft University of Technology, Delft, 1998, 38–44, arXiv: math/9602214

[11] A. D. Alhaidari, M. E. H. Ismail, “Quantum mechanics without potential function”, J. Math. Phys., 56:7 (2015), 072107, 19 pp. | DOI | MR

[12] K. M. Case, “Orthogonal polynomials from the viewpoint of scattering theory”, J. Math. Phys., 15:12 (1974), 2166–2174 | DOI | MR

[13] J. S. Geronimo, K. M. Case, “Scattering theory and polynomials orthogonal on the real line”, Trans. Amer. Math. Soc., 258:2 (1980), 467–494 | DOI | MR

[14] A. D. Alhaidari, “Representation reduction and solution space contraction in quasi-exactly solvable systems”, J. Phys. A: Math. Theor., 40:24 (2007), 6305–6328 | DOI | MR

[15] R. W. Haymaker, L. Schlessinger, “Padé approximants as a computational tool for solving the Schrodinger and Bethe–Salpeter equations”, The Padé Approximation in Theoretical Physics, Mathematics in Science and Engineering, 71, eds. G. A. Baker, J. L. Gammel, Academic Press, New York, 1970, 257–287 | MR

[16] J. Aquilar, J. M. Combes, “A class of analytic perturbations for one-body Schrödinger Hamiltonians”, Commun. Math. Phys., 22:4 (1971), 269–279 | DOI | MR

[17] E. Balslev, J. M. Combes, “Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions”, Commun. Math. Phys., 22:4 (1971), 280–294 | DOI | MR

[18] B. Simon, “Quadratic form techniques and the Balslev–Combes theorem”, Commun. Math. Phys., 27:1 (1972), 1–9 | DOI | MR

[19] B. Simon, “Resonances in $n$-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory”, Ann. Math., 97:2 (1973), 247–274 | DOI | MR

[20] C. Cerjan, R. Hedges, C. Holt, W. P. Reinhardt, K. Scheibner, J. J. Wendoloski, “Complex coordinates and the Stark effect”, Internat. J. Quantum Chem., 14:4 (1978), 393–418 | DOI

[21] W. P. Reinhardt, “Complex coordinates in the theory of atomic and molecular structure and dynamics”, Ann. Rev. Phys. Chem., 33 (1982), 223–255 | DOI

[22] B. R. Junker, “Recent computational developments in the use of complex scaling in resonance phenomena”, Adv. Atom. Mol. Phys., 18 (1982), 207–263 | DOI

[23] A. Maquet, S.-I. Chu, W. P. Reinhardt, “Stark ionization in dc and ac fields: An $L^2$ complex-coordinate approach”, Phys. Rev. A, 27:6 (1983), 2946–2970 | DOI

[24] Y. K. Ho, “The method of complex coordinate rotation and its applications to atomic collision processes”, Phys. Rep., 99:1 (1983), 1–68 | DOI

[25] M. Bylicki, “Methods involving complex coordinates applied to atoms”, Adv. Quantum Chem., 32 (1998), 207–226 | DOI

[26] N. Moiseyev, “Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling”, Phys. Rep., 302:5–6 (1998), 212–293 | DOI