Four-parameter $1/r^2$ singular short-range potential with rich bound states and a~resonance spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 422-436

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the tridiagonal representation approach to enlarge the class of exactly solvable quantum systems. For this, we use a square-integrable basis in which the matrix representation of the wave operator is tridiagonal. In this case, the wave equation becomes a three-term recurrence relation for the expansion coefficients of the wave function with a solution in terms of orthogonal polynomials that is equivalent to a solution of the original problem. We obtain S-wave bound states for a new four-parameter potential with a $1/r^2$ singularity but short-range, which has an elaborate configuration structure and rich spectral properties. A particle scattered by this potential must overcome a barrier and can then be trapped in the potential valley in a resonance or bound state. Using complex rotation, we demonstrate the rich spectral properties of the potential in the case of a nonzero angular momentum and show how this structure varies with the parameters of the potential.
Keywords: $1/r^2$ singular potential, tridiagonal representation, recurrence relation, parameter spectrum, bound state, resonance.
@article{TMF_2018_195_3_a4,
     author = {A. D. Alhaidari},
     title = {Four-parameter $1/r^2$ singular short-range potential with rich bound states and a~resonance spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {422--436},
     publisher = {mathdoc},
     volume = {195},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/}
}
TY  - JOUR
AU  - A. D. Alhaidari
TI  - Four-parameter $1/r^2$ singular short-range potential with rich bound states and a~resonance spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 422
EP  - 436
VL  - 195
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/
LA  - ru
ID  - TMF_2018_195_3_a4
ER  - 
%0 Journal Article
%A A. D. Alhaidari
%T Four-parameter $1/r^2$ singular short-range potential with rich bound states and a~resonance spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 422-436
%V 195
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/
%G ru
%F TMF_2018_195_3_a4
A. D. Alhaidari. Four-parameter $1/r^2$ singular short-range potential with rich bound states and a~resonance spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 422-436. http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/