Four-parameter $1/r^2$ singular short-range potential with rich bound states and a~resonance spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 422-436
Voir la notice de l'article provenant de la source Math-Net.Ru
We use the tridiagonal representation approach to enlarge the class of exactly solvable quantum systems. For this, we use a square-integrable basis in which the matrix representation of the wave operator is tridiagonal. In this case, the wave equation becomes a three-term recurrence relation for the expansion coefficients of the wave function with a solution in terms of orthogonal polynomials that is equivalent to a solution of the original problem. We obtain S-wave bound states for a new four-parameter potential with a $1/r^2$ singularity but short-range, which has an elaborate configuration structure and rich spectral properties. A particle scattered by this potential must overcome a barrier and can then be trapped in the potential valley in a resonance or bound state. Using complex rotation, we demonstrate the rich spectral properties of the potential in the case of a nonzero angular momentum and show how this structure varies with the parameters of the potential.
Keywords:
$1/r^2$ singular potential, tridiagonal representation, recurrence relation, parameter spectrum, bound state, resonance.
@article{TMF_2018_195_3_a4,
author = {A. D. Alhaidari},
title = {Four-parameter $1/r^2$ singular short-range potential with rich bound states and a~resonance spectrum},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {422--436},
publisher = {mathdoc},
volume = {195},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/}
}
TY - JOUR AU - A. D. Alhaidari TI - Four-parameter $1/r^2$ singular short-range potential with rich bound states and a~resonance spectrum JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 422 EP - 436 VL - 195 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/ LA - ru ID - TMF_2018_195_3_a4 ER -
%0 Journal Article %A A. D. Alhaidari %T Four-parameter $1/r^2$ singular short-range potential with rich bound states and a~resonance spectrum %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 422-436 %V 195 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/ %G ru %F TMF_2018_195_3_a4
A. D. Alhaidari. Four-parameter $1/r^2$ singular short-range potential with rich bound states and a~resonance spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 422-436. http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a4/