@article{TMF_2018_195_3_a3,
author = {M. Bordag},
title = {Vacuum and thermal energies for two oscillators interacting through a~field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {391--421},
year = {2018},
volume = {195},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a3/}
}
M. Bordag. Vacuum and thermal energies for two oscillators interacting through a field. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 391-421. http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a3/
[1] V. B. Bezerra, G. L. Klimchitskaya, V. M. Mostepanenko, “Thermodynamical aspects of the Casimir force between real metals at nonzero temperature”, Phys. Rev. A, 65:5 (2002), 052113, 7 pp. | DOI
[2] G. L. Klimchitskaya, V. M. Mostepanenko, “Conductivity of dielectric and thermal atom-wall interaction”, J. Phys. A: Math. Theor., 41:31 (2008), 312002, 9 pp. | DOI
[3] G. L. Klimchitskaya, V. M. Mostepanenko, “Casimir free energy and pressure for magnetic metal films”, Phys. Rev. B, 94:4 (2016), 045404, 13 pp. | DOI
[4] J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, “Casimir effect in dielectrics”, Ann. Phys., 115:1 (1978), 1–23 | DOI | MR
[5] D. Kupiszewska, “Casimir effect in absorbing media”, Phys. Rev. A, 46:5 (1992), 2286–2294 | DOI
[6] F. S. S. Rosa, D. A. R. Dalvit, P. W. Milonni, “Electromagnetic energy, absorption, and Casimir forces: uniform dielectric media in thermal equilibrium”, Phys. Rev. A, 81:3 (2010), 033812, 12 pp. | DOI
[7] F. S. S. Rosa, D. A. R. Dalvit, P. W. Milonni, “Electromagnetic energy, absorption, and Casimir forces. II. Inhomogeneous dielectric media”, Phys. Rev. A, 84:5 (2011), 053813, 13 pp. | DOI
[8] F. C. Lombardo, F. D. Mazzitelli, A. E. Rubio López, “Casimir force for absorbing media in an open quantum system framework: scalar model”, Phys. Rev. A, 84:5 (2011), 052517, 12 pp. | DOI
[9] P. R. Berman, G. W. Ford, P. W. Milonni, “Nonperturbative calculation of the London–van der Waals interaction potential”, Phys. Rev. A, 89:2 (2014), 022127, 4 pp. | DOI
[10] M. A. Braun, “Ob energii Kazimira v srede s dispersiei i pogloscheniem v ramkakh podkhoda diagonalizatsii Fano”, TMF, 190:2 (2017), 277–292 | DOI | DOI | MR
[11] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, New York, 2002 | MR
[12] M. Bordag, “Drude model and Lifshitz formula”, Eur. Phys. J. C, 71 (2011), 1788, 12 pp. | DOI
[13] F. Intravaia, R. Behunin, “Casimir effect as a sum over modes in dissipative systems”, Phys. Rev. A, 86:6 (2012), 062517 pp. | DOI
[14] U. Fano, “Effects of configuration interaction on intensities and phase shifts”, Phys. Rev., 124:6 (1961), 1866–1878 | DOI
[15] B. Huttner, S. M. Barnett, “Quantization of the electromagnetic field in dielectrics”, Phys. Rev. A, 46:7 (1992), 4306–4322 | DOI
[16] H. B. Callen, T. A. Welton, “Irreversibility and generalized noise”, Phys. Rev., 83:1 (1951), 34–40 | DOI | MR
[17] G. W. Ford, J. T. Lewis, R. F. O'Connell, “Quantum Langevin equation”, Phys. Rev. A, 37:11 (1988), 4419–4428 | DOI | MR
[18] G. W. Ford, J. T. Lewis, R. F. O'Connell, “Quantum oscillator in a blackbody radiation field”, Phys. Rev. Lett., 55:21 (1985), 2273–2276 | DOI | MR
[19] M. Bordag, “Vacuum energy in smooth background fields”, J. Phys. A: Math. Gen., 28:3 (1995), 755–765 | DOI | MR
[20] M. J. Renne, “Retarded Van der Waals interaction in a system of harmonic oscillators”, Physica, 53:2 (1971), 193–209 | DOI
[21] M. J. Renne, B. R. A. Nijboer, “Microscopic derivation of macroscopic Van der Waals forces”, Chem. Phys. Lett., 1:8 (1967), 317–320 | DOI
[22] M. Bordag, J. M. Muñoz-Castañeda, “Dirac lattices, zero-range potentials and self-adjoint extension”, Phys. Rev. D, 91:6 (2015), 065027, 19 pp. | MR