Keywords: stability, normal form, dynamics.
@article{TMF_2018_195_3_a1,
author = {S. A. Kashchenko},
title = {Regular and irregular solutions in the~problem of dislocations in solids},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {362--380},
year = {2018},
volume = {195},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a1/}
}
S. A. Kashchenko. Regular and irregular solutions in the problem of dislocations in solids. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 362-380. http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a1/
[1] Ya. I. Frenkel, T. A. Kontorova, “K teorii plasticheskoi deformatsii i dvoinikovaniya. I”, ZhETF, 8 (1938), 89–97; “К теории пластической деформации и двойникования. II”, 1340–1348 ; “К теории пластической деформации и двойникования. III”, 1349–1358 | Zbl | Zbl
[2] Ch. Uert, R. Tomson, Fizika tverdogo tela, Mir, M., 1969
[3] E. Fermi, J. Pasta, S. Ulam, Studies of Nonlinear Problems. I, Report LA-1940, Los Alamos Scientific Laboratory of the University of California, Los Alamos, 1955
[4] T. Genta, A. Giorgilli, S. Paleari, T. Penati, “Packets of resonant modes in the Fermi–Pasta–Ulam system”, Phys. Lett. A, 376:28–29 (2012), 2038–2044 | DOI
[5] N. A. Kudryashov, Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, IKI, M.–Izhevsk, 2004
[6] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–deVries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI
[7] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR
[8] N. A. Kudryashov, “From the Fermi–Pasta–Ulam model to higher-order nonlinear evolution equations”, Rep. Math. Phys., 77:1 (2016), 57–67 | DOI | MR
[9] D. S. Glyzin, S. A. Kaschenko, A. O. Tolbei, “Vzaimodeistvie dvukh voln v modeli Fermi–Pasta–Ulama”, Model. i analiz inform. sistem, 23:5 (2016), 548–558 | DOI | MR
[10] S. A. Kaschenko, “Normalnaya forma dlya uravneniya Kortevega–de Friza–Byurgersa”, Dokl. RAN, 468:4 (2016), 383–386 | DOI | DOI
[11] S. A. Kaschenko, “Normalization in the systems with small diffusion”, Internat. J. Bifur. Chaos, 6:6 (1996), 1093–1109 | DOI | MR
[12] I. S. Kaschenko, S. A. Kaschenko, “Local dynamics of the two-component singular perturbed systems of parabolic type”, Internat. J. Bifur. Chaos, 25:11 (2015), 1550142, 27 pp. | DOI | MR
[13] S. A. Kaschenko, “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1052 | MR
[14] I. S. Kaschenko, S. A. Kaschenko, “Kvazinormalnye formy dvukhkomponentnykh singulyarno vozmuschennykh sistem”, Dokl. RAN, 447:4 (2012), 376–381 | DOI | MR
[15] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, “Intellekt”, Dolgoprudnyi, 2010
[16] N. A. Kudryashov, “Analytical properties of nonlinear dislocation equation”, Appl. Math. Lett., 69 (2017), 29–34 | DOI | MR
[17] P. I. Naumkin, “Asimptotika pri bolshikh vremenakh reshenii nelineinogo uravneniya Shredingera”, Izv. RAN. Ser. matem., 61:4 (1997), 81–118 | DOI | DOI | MR | Zbl
[18] P. I. Naumkin, “Dissipativnoe svoistvo kubicheskogo nelineinogo uravneniya Shredingera”, Izv. RAN. Ser. matem., 79:2 (2015), 137–166 | DOI | DOI | MR | Zbl