Regular and irregular solutions in the problem of dislocations in solids
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 362-380 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an initial differential equation with deviations of the spatial variable, we consider asymptotic solutions with respect to the residual. All solutions are naturally divided into classes depending regularly and irregularly on the problem parameters. In different regions in a small neighborhood of the zero equilibrium state of the phase space, we construct special nonlinear distribution equations and systems of equations depending on continuous families of certain parameters. In particular, we show that solutions of the initial spatially one-dimensional equation can be described using solutions of special equations and systems of Schrödinger-type equations in a spatially two-dimensional argument range.
Mots-clés : bifurcation, singular perturbation
Keywords: stability, normal form, dynamics.
@article{TMF_2018_195_3_a1,
     author = {S. A. Kashchenko},
     title = {Regular and irregular solutions in the~problem of dislocations in solids},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {362--380},
     year = {2018},
     volume = {195},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a1/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - Regular and irregular solutions in the problem of dislocations in solids
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 362
EP  - 380
VL  - 195
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a1/
LA  - ru
ID  - TMF_2018_195_3_a1
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T Regular and irregular solutions in the problem of dislocations in solids
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 362-380
%V 195
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a1/
%G ru
%F TMF_2018_195_3_a1
S. A. Kashchenko. Regular and irregular solutions in the problem of dislocations in solids. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 362-380. http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a1/

[1] Ya. I. Frenkel, T. A. Kontorova, “K teorii plasticheskoi deformatsii i dvoinikovaniya. I”, ZhETF, 8 (1938), 89–97; “К теории пластической деформации и двойникования. II”, 1340–1348 ; “К теории пластической деформации и двойникования. III”, 1349–1358 | Zbl | Zbl

[2] Ch. Uert, R. Tomson, Fizika tverdogo tela, Mir, M., 1969

[3] E. Fermi, J. Pasta, S. Ulam, Studies of Nonlinear Problems. I, Report LA-1940, Los Alamos Scientific Laboratory of the University of California, Los Alamos, 1955

[4] T. Genta, A. Giorgilli, S. Paleari, T. Penati, “Packets of resonant modes in the Fermi–Pasta–Ulam system”, Phys. Lett. A, 376:28–29 (2012), 2038–2044 | DOI

[5] N. A. Kudryashov, Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, IKI, M.–Izhevsk, 2004

[6] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–deVries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI

[7] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR

[8] N. A. Kudryashov, “From the Fermi–Pasta–Ulam model to higher-order nonlinear evolution equations”, Rep. Math. Phys., 77:1 (2016), 57–67 | DOI | MR

[9] D. S. Glyzin, S. A. Kaschenko, A. O. Tolbei, “Vzaimodeistvie dvukh voln v modeli Fermi–Pasta–Ulama”, Model. i analiz inform. sistem, 23:5 (2016), 548–558 | DOI | MR

[10] S. A. Kaschenko, “Normalnaya forma dlya uravneniya Kortevega–de Friza–Byurgersa”, Dokl. RAN, 468:4 (2016), 383–386 | DOI | DOI

[11] S. A. Kaschenko, “Normalization in the systems with small diffusion”, Internat. J. Bifur. Chaos, 6:6 (1996), 1093–1109 | DOI | MR

[12] I. S. Kaschenko, S. A. Kaschenko, “Local dynamics of the two-component singular perturbed systems of parabolic type”, Internat. J. Bifur. Chaos, 25:11 (2015), 1550142, 27 pp. | DOI | MR

[13] S. A. Kaschenko, “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1052 | MR

[14] I. S. Kaschenko, S. A. Kaschenko, “Kvazinormalnye formy dvukhkomponentnykh singulyarno vozmuschennykh sistem”, Dokl. RAN, 447:4 (2012), 376–381 | DOI | MR

[15] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, “Intellekt”, Dolgoprudnyi, 2010

[16] N. A. Kudryashov, “Analytical properties of nonlinear dislocation equation”, Appl. Math. Lett., 69 (2017), 29–34 | DOI | MR

[17] P. I. Naumkin, “Asimptotika pri bolshikh vremenakh reshenii nelineinogo uravneniya Shredingera”, Izv. RAN. Ser. matem., 61:4 (1997), 81–118 | DOI | DOI | MR | Zbl

[18] P. I. Naumkin, “Dissipativnoe svoistvo kubicheskogo nelineinogo uravneniya Shredingera”, Izv. RAN. Ser. matem., 79:2 (2015), 137–166 | DOI | DOI | MR | Zbl