Regular and irregular solutions in the~problem of dislocations in solids
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 362-380
Voir la notice de l'article provenant de la source Math-Net.Ru
For an initial differential equation with deviations of the spatial variable, we consider asymptotic solutions with respect to the residual. All solutions are naturally divided into classes depending regularly and irregularly on the problem parameters. In different regions in a small neighborhood of the zero equilibrium state of the phase space, we construct special nonlinear distribution equations and systems of equations depending on continuous families of certain parameters. In particular, we show that solutions of the initial spatially one-dimensional equation can be described using solutions of special equations and systems of Schrödinger-type equations in a spatially two-dimensional argument range.
Mots-clés :
bifurcation, singular perturbation
Keywords: stability, normal form, dynamics.
Keywords: stability, normal form, dynamics.
@article{TMF_2018_195_3_a1,
author = {S. A. Kashchenko},
title = {Regular and irregular solutions in the~problem of dislocations in solids},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {362--380},
publisher = {mathdoc},
volume = {195},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a1/}
}
TY - JOUR AU - S. A. Kashchenko TI - Regular and irregular solutions in the~problem of dislocations in solids JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 362 EP - 380 VL - 195 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a1/ LA - ru ID - TMF_2018_195_3_a1 ER -
S. A. Kashchenko. Regular and irregular solutions in the~problem of dislocations in solids. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 362-380. http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a1/