Mots-clés : Poincaré group, Dirac–Pauli–Fierz equation.
@article{TMF_2018_195_3_a0,
author = {A. P. Isaev and M. A. Podoinicin},
title = {Unitary representations of {the~Wigner} group $ISL(2,\mathbb C)$ and a~two-spinor description of~massive particles with an~arbitrary spin},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {331--361},
year = {2018},
volume = {195},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a0/}
}
TY - JOUR AU - A. P. Isaev AU - M. A. Podoinicin TI - Unitary representations of the Wigner group $ISL(2,\mathbb C)$ and a two-spinor description of massive particles with an arbitrary spin JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 331 EP - 361 VL - 195 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a0/ LA - ru ID - TMF_2018_195_3_a0 ER -
%0 Journal Article %A A. P. Isaev %A M. A. Podoinicin %T Unitary representations of the Wigner group $ISL(2,\mathbb C)$ and a two-spinor description of massive particles with an arbitrary spin %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 331-361 %V 195 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a0/ %G ru %F TMF_2018_195_3_a0
A. P. Isaev; M. A. Podoinicin. Unitary representations of the Wigner group $ISL(2,\mathbb C)$ and a two-spinor description of massive particles with an arbitrary spin. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 3, pp. 331-361. http://geodesic.mathdoc.fr/item/TMF_2018_195_3_a0/
[1] E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group”, Ann. Math., 40:1 (1939), 149–204 ; V. Bargmann, E. P. Wigner, “Group theoretical discussion of relativistic wave equations”, Proc. Nat. Acad. Sci. USA, 34:5 (1948), 211–223 | DOI | MR | MR | Zbl
[2] P. A. M. Dirac, “Relativistic wave equations”, Proc. Roy. Soc. London. Ser. A, 155:886 (1936), 447–459 | DOI
[3] M. Fierz, “Über den Drehimpuls von Teilichen mit Ruhemasse null und beliebigem Spin”, Helvetica Phys. Acta, 13:12 (1940), 45–60 | MR
[4] M. Fierz, W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”, Proc. Roy. Soc. London. Ser. A, 173:953 (1939), 211–232 | DOI | MR
[5] A. P. Isaev, V. A. Rubakov, Teoriya grupp i simmetrii. Konechnye gruppy. Gruppy i algebry Li, URSS, M., 2018
[6] S. Weinberg, “Feynman rules for any spin”, Phys. Rev., 133:5B (1964), B1318–B1332 | DOI | MR | Zbl
[7] Yu. V. Novozhilov, Vvedenie v teoriyu elementarnykh chastits, Nauka, M., 1972 | MR | MR
[8] J. A. de Azcárraga, A. Frydryszak, J. Lukierski, C. Miquel-Espanya, “Massive relativistic particle model with spin from free two-twistor dynamics and its quantization”, Phys. Rev. D, 73:10 (2006), 105011, 9 pp. | DOI | MR
[9] J. A. Azcárraga, S. Fedoruk, J. M. Izquierdo, J. Lukierski, “Two-twistor particle models and free massive higher spin fields”, JHEP, 4 (2015), 10, 39 pp. | DOI
[10] R. E. Behrends, C. Fronsdal, “Fermi decay for higher spin particles”, Phys. Rev., 106:2 (1957), 345–353 | DOI | MR
[11] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR | MR | Zbl
[12] I. L. Buchbinder, S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity. Or a Walk Through Superspace, IOP, Bristol, 1995 | MR
[13] Yu. B. Rumer, A. I. Fet, Teoriya grupp i kvantovannye polya, Nauka, M., 1977 | MR
[14] R. Penrose, M. A. H. MacCallum, “Twistor theory: an approach to the quantization of fields and space-time”, Phys. Rep., 6:4 (1973), 241–315 | DOI | MR
[15] K. P. Tod, “Some symplectic forms arising in twistor theory”, Rep. Math. Phys., 11:3 (1977), 339–346 | DOI | MR
[16] Z. Perjés, “Twistor variables of relativistic mechanics”, Phys. Rev. D, 11:8 (1975), 2031–2041 | DOI | MR
[17] L. P. Hughston, Twistors and Particles, Lecture Notes in Physics, 97, Springer, Berlin, 1979 | MR
[18] A. Bette, “On a pointlike relativistic massive and spinning particle”, J. Math. Phys., 25:8 (1984), 2456–2460 ; “Directly interacting massless particles – a twistor approach”, J. Math. Phys., 37:4 (1996), 1724–1734 | DOI | MR | DOI | MR
[19] A. Bette, J. A. de Azcárraga, J. Lukierski, C. Miquel-Espanya, “Massive relativistic free fields with Lorentz spins and electric charges”, Phys. Lett. B, 595:1–4 (2004), 491–497 | DOI | MR
[20] S. Fedoruk, J. Lukierski, “Massive twistor particle with spin generated by Souriau–Wess–Zumino term and its quantization”, Phys. Lett. B, 733 (2014), 309–315 | DOI
[21] L. C. Biedenharn, H. W. Braden, P. Truini, H. van Dam, “Relativistic wavefunctions on spinor spaces”, J. Phys. A, 21:18 (1988), 3593–3610 | DOI | MR
[22] C. Fronsdal, “On the theory of higher spin fields”, Nuovo Cimento, 9, supp. 2 (1958), 416–443 | DOI | MR
[23] R. Penrouz, V. Rindler, Spinory i prostranstvo-vremya, v. 2, Spinornye i tvistornye metody v geometrii prostranstva-vremeni, Mir, M., 1988 | MR | MR
[24] R. Penrose, “Zero rest-mass fields including gravitation: asymptotic behaviour”, Proc. Roy. Soc. London. Ser. A, 284:1397 (1965), 159–203 | DOI | MR
[25] E. Witten, “Perturbative gauge theory as a string theory in twistor space”, Commun. Math. Phys., 252:1–3 (2004), 189–258 | DOI | MR
[26] H. Elvang, Y.-T. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge Univ. Press, Cambridge, 2015 | DOI | MR