Dynamical symmetry breaking in geometrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 313-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using a first-order perturbative formulation, we analyze the local loss of symmetry when a source of electromagnetic and gravitational fields interacts with an agent that perturbs the original geometry associated with the source. We had proved that the local gauge groups are isomorphic to local groups of transformations of special tetrads. These tetrads define two orthogonal planes at every point in space–time such that every vector in these local planes is an eigenvector of the Einstein–Maxwell stress–energy tensor. Because the local gauge symmetry in Abelian or even non-Abelian field structures in four-dimensional Lorentzian space–times is manifested by the existence of local planes of symmetry, the loss of symmetry is manifested by a tilt of these planes under the influence of an external agent. In this strict sense, the original local symmetry is lost. We thus prove that the new planes at the same point after the tilting generated by the perturbation correspond to a new symmetry. Our goal here is to show that the geometric manifestation of local gauge symmetries is dynamical. Although the original local symmetries are lost, new symmetries arise. This is evidence for a dynamical evolution of local symmetries. We formulate a new theorem on dynamical symmetry evolution. The proposed new classical model can be useful for better understanding anomalies in quantum field theories.
Keywords: new group, new group isomorphism, Einstein–Maxwell gauge symmetry, dynamical symmetry breaking.
Mots-clés : perturbative formulation
@article{TMF_2018_195_2_a9,
     author = {A. Garat},
     title = {Dynamical symmetry breaking in geometrodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {313--328},
     year = {2018},
     volume = {195},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a9/}
}
TY  - JOUR
AU  - A. Garat
TI  - Dynamical symmetry breaking in geometrodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 313
EP  - 328
VL  - 195
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a9/
LA  - ru
ID  - TMF_2018_195_2_a9
ER  - 
%0 Journal Article
%A A. Garat
%T Dynamical symmetry breaking in geometrodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 313-328
%V 195
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a9/
%G ru
%F TMF_2018_195_2_a9
A. Garat. Dynamical symmetry breaking in geometrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 313-328. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a9/

[1] Y. Nambu, G. Jonna-Lasinio, “Dynamical model of elementary particles based on an analogy with superconductivity. I”, Phys. Rev., 122:1 (1961), 345–358 | DOI

[2] J. Schwinger, “Gauge invariance and mass”, Phys. Rev., 125:1 (1962), 397–398 | DOI | MR

[3] R. Jackiw, K. Johnson, “Dynamical model of spontaneously broken gauge symmetries”, Phys. Rev. D, 8:8 (1973), 2386–2397 | DOI

[4] J. M. Cornwall, R. E. Norton, “Spontaneous symmetry breaking without scalar mesons”, Phys. Rev. D, 8:10 (1973), 3338–3345 | DOI

[5] D. J. Gross, A. Neveu, “Dynamical symmetry breaking in asymptotically free field theories”, Phys. Rev. D, 10:10 (1974), 3235–3253 | DOI

[6] E. J. Eichten, F. L. Feinberg, “Dynamical symmetry breaking of non-Abelian gauge symmetries”, Phys. Rev. D, 10:10 (1974), 3254–3279 | DOI

[7] S. Coleman, R. Jackiw, H. D. Politzer, “Spontaneous symmetry breaking in the $O(N)$ model for large $N$”, Phys. Rev. D, 10:8 (1974), 2491–2499 | DOI

[8] J. M. Cornwall, R. Jackiw, E. Tomboulis, “Effective action for composite operators”, Phys. Rev. D, 10:8 (1975), 2428–2445 | DOI

[9] S.-H. H. Tye, E. Tomboulis, E. C. Poggio, “Dynamical symmetry breaking in non-Abelian field theories”, Phys. Rev. D, 11:10 (1975), 2839–2855 | DOI

[10] K. Lane, “Comment on the analogy between chiral-symmetry breakdown and superconductivity”, Phys. Rev. D, 10:4 (1974), 1353–1355 | DOI

[11] S. Weinberg, “Implications of dynamical symmetry breaking”, Phys. Rev. D, 13:4 (1976), 974–996 | DOI

[12] A. Garat, “Tetrads in geometrodynamics”, J. Math. Phys, 46:10 (2005), 102502, 18 pp. ; Erratum, 55:1 (2014), 019902, 2 pp. | DOI | MR | Zbl | DOI | Zbl

[13] J. A. Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and Its Geometrical Applications, Springer, Berlin, 1954 | MR

[14] P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Phys. Lett., 13:16 (1964), 508–509 ; “Broken symmetries, massless particles and gauge fields”, 12:2 (1965), 132–133 ; “Spontaneous symmetry breakdown without massless bosons”, Phys. Rev., 145:4 (1966), 1156–1163 ; F. Englert, R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett., 13:9 (1964), 321–323 ; G. S. Guralnik, C. R. Hagen, T. W. B. Kibble, “Global conservation laws and massless particles”, Phys. Rev. Lett., 13:20 (1964), 585–587 ; T. W. Kibble, “Symmetry breaking in non-Abelian gauge theories”, Phys. Rev., 155:5 (1967), 1554–1561 | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | DOI

[15] C. Misner, J. A. Wheeler, “Classical physics as geometry”, Ann. Phys., 2:6 (1957), 525–603 | DOI | MR | Zbl

[16] N. Cabibbo, E. Ferrari, “Quantum electrodynamics with Dirac monopoles”, Nuovo Cimento, 23:6 (1962), 1147–1154 | DOI | MR

[17] R. Lazkoz, J. M. M. Senovilla, R. Vera, “Conserved superenergy currents”, Class. Quantum Grav., 20:19 (2003), 4135–4152 | DOI | MR | Zbl

[18] G. Bergqvist, I. Eriksson, J. M. M. Senovilla, “New electromagnetic conservation laws”, Class. Quantum Grav., 20:13 (2003), 2663–2668 | DOI | MR | Zbl

[19] J. M. M. Senovilla, “General electric-magnetic decomposition of fields, positivity and Rainich-like conditions”, Reference Frames and Gravitomagnetism, Proceedings of the 23rd Spanish Relativity Meeting (EREs2000) (Valladolid, September 6–9, 2000), eds. J. F. Pascual-Sánchez, L. Floría, A. San Miguel, F. Vicente, World Sci., Singapore, 2001, 145–164, arXiv: gr-qc/0010095 | DOI | MR

[20] J. M. M. Senovilla, “Super-energy tensors”, Class. Quantum Grav., 17:14 (2000), 2799–2841 | DOI | MR | Zbl

[21] D. J. Gross, “Gauge theory – past, present, and future”, Chinese J. Phys., 30:7 (1992), 955–972

[22] S. Veinberg, Gravitatsiya i kosmologiya, Mir, M., 1975

[23] L. Papantonopoulos (ed.), Physics of Black Holes. A Guided Tour, Lecture Notes in Physics, 769, Springer, Berlin, 2009 | MR

[24] T. Regge, J. A. Wheeler, “Stability of a Schwarzschild singularity”, Phys. Rev., 108:4 (1957), 1063–1069 | DOI | MR | Zbl

[25] V. Moncrief, “Gravitational perturbations of spherically symmetric systems. I. The exterior problem”, Ann. Phys., 88:2 (1974), 323–342 | DOI | MR

[26] A. Garat, R. Price, “Gauge invariant formalism for second order perturbations of Schwarzschild spacetimes”, Phys. Rev. D, 61:4 (2000), 044006, 15 pp. | DOI | MR