Mots-clés : perturbative formulation
@article{TMF_2018_195_2_a9,
author = {A. Garat},
title = {Dynamical symmetry breaking in geometrodynamics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {313--328},
year = {2018},
volume = {195},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a9/}
}
A. Garat. Dynamical symmetry breaking in geometrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 313-328. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a9/
[1] Y. Nambu, G. Jonna-Lasinio, “Dynamical model of elementary particles based on an analogy with superconductivity. I”, Phys. Rev., 122:1 (1961), 345–358 | DOI
[2] J. Schwinger, “Gauge invariance and mass”, Phys. Rev., 125:1 (1962), 397–398 | DOI | MR
[3] R. Jackiw, K. Johnson, “Dynamical model of spontaneously broken gauge symmetries”, Phys. Rev. D, 8:8 (1973), 2386–2397 | DOI
[4] J. M. Cornwall, R. E. Norton, “Spontaneous symmetry breaking without scalar mesons”, Phys. Rev. D, 8:10 (1973), 3338–3345 | DOI
[5] D. J. Gross, A. Neveu, “Dynamical symmetry breaking in asymptotically free field theories”, Phys. Rev. D, 10:10 (1974), 3235–3253 | DOI
[6] E. J. Eichten, F. L. Feinberg, “Dynamical symmetry breaking of non-Abelian gauge symmetries”, Phys. Rev. D, 10:10 (1974), 3254–3279 | DOI
[7] S. Coleman, R. Jackiw, H. D. Politzer, “Spontaneous symmetry breaking in the $O(N)$ model for large $N$”, Phys. Rev. D, 10:8 (1974), 2491–2499 | DOI
[8] J. M. Cornwall, R. Jackiw, E. Tomboulis, “Effective action for composite operators”, Phys. Rev. D, 10:8 (1975), 2428–2445 | DOI
[9] S.-H. H. Tye, E. Tomboulis, E. C. Poggio, “Dynamical symmetry breaking in non-Abelian field theories”, Phys. Rev. D, 11:10 (1975), 2839–2855 | DOI
[10] K. Lane, “Comment on the analogy between chiral-symmetry breakdown and superconductivity”, Phys. Rev. D, 10:4 (1974), 1353–1355 | DOI
[11] S. Weinberg, “Implications of dynamical symmetry breaking”, Phys. Rev. D, 13:4 (1976), 974–996 | DOI
[12] A. Garat, “Tetrads in geometrodynamics”, J. Math. Phys, 46:10 (2005), 102502, 18 pp. ; Erratum, 55:1 (2014), 019902, 2 pp. | DOI | MR | Zbl | DOI | Zbl
[13] J. A. Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and Its Geometrical Applications, Springer, Berlin, 1954 | MR
[14] P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Phys. Lett., 13:16 (1964), 508–509 ; “Broken symmetries, massless particles and gauge fields”, 12:2 (1965), 132–133 ; “Spontaneous symmetry breakdown without massless bosons”, Phys. Rev., 145:4 (1966), 1156–1163 ; F. Englert, R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett., 13:9 (1964), 321–323 ; G. S. Guralnik, C. R. Hagen, T. W. B. Kibble, “Global conservation laws and massless particles”, Phys. Rev. Lett., 13:20 (1964), 585–587 ; T. W. Kibble, “Symmetry breaking in non-Abelian gauge theories”, Phys. Rev., 155:5 (1967), 1554–1561 | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | DOI
[15] C. Misner, J. A. Wheeler, “Classical physics as geometry”, Ann. Phys., 2:6 (1957), 525–603 | DOI | MR | Zbl
[16] N. Cabibbo, E. Ferrari, “Quantum electrodynamics with Dirac monopoles”, Nuovo Cimento, 23:6 (1962), 1147–1154 | DOI | MR
[17] R. Lazkoz, J. M. M. Senovilla, R. Vera, “Conserved superenergy currents”, Class. Quantum Grav., 20:19 (2003), 4135–4152 | DOI | MR | Zbl
[18] G. Bergqvist, I. Eriksson, J. M. M. Senovilla, “New electromagnetic conservation laws”, Class. Quantum Grav., 20:13 (2003), 2663–2668 | DOI | MR | Zbl
[19] J. M. M. Senovilla, “General electric-magnetic decomposition of fields, positivity and Rainich-like conditions”, Reference Frames and Gravitomagnetism, Proceedings of the 23rd Spanish Relativity Meeting (EREs2000) (Valladolid, September 6–9, 2000), eds. J. F. Pascual-Sánchez, L. Floría, A. San Miguel, F. Vicente, World Sci., Singapore, 2001, 145–164, arXiv: gr-qc/0010095 | DOI | MR
[20] J. M. M. Senovilla, “Super-energy tensors”, Class. Quantum Grav., 17:14 (2000), 2799–2841 | DOI | MR | Zbl
[21] D. J. Gross, “Gauge theory – past, present, and future”, Chinese J. Phys., 30:7 (1992), 955–972
[22] S. Veinberg, Gravitatsiya i kosmologiya, Mir, M., 1975
[23] L. Papantonopoulos (ed.), Physics of Black Holes. A Guided Tour, Lecture Notes in Physics, 769, Springer, Berlin, 2009 | MR
[24] T. Regge, J. A. Wheeler, “Stability of a Schwarzschild singularity”, Phys. Rev., 108:4 (1957), 1063–1069 | DOI | MR | Zbl
[25] V. Moncrief, “Gravitational perturbations of spherically symmetric systems. I. The exterior problem”, Ann. Phys., 88:2 (1974), 323–342 | DOI | MR
[26] A. Garat, R. Price, “Gauge invariant formalism for second order perturbations of Schwarzschild spacetimes”, Phys. Rev. D, 61:4 (2000), 044006, 15 pp. | DOI | MR