@article{TMF_2018_195_2_a8,
author = {I. Y. Park},
title = {Four-dimensional covariance of {Feynman} diagrams in {Einstein} gravity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {288--312},
year = {2018},
volume = {195},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a8/}
}
I. Y. Park. Four-dimensional covariance of Feynman diagrams in Einstein gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 288-312. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a8/
[1] B. S. DeWitt, “Quantum field theory in curved spacetime”, Phys. Rept., 19:6 (1975), 295–357 | DOI
[2] K. S. Stelle, “Renormalization of higher-derivative quantum gravity”, Phys. Rev. D, 16:4 (1977), 953–969 | DOI | MR
[3] I. Antoniadis, E. T. Tomboulis, “Gauge invariance and unitarity in higher-derivative quantum gravity”, Phys. Rev. D, 33:10 (1986), 2756–2779 | DOI
[4] S. Weinberg, “Ultraviolet divergences in quantum theories of gravitation”, General Relativity. An Einstein Centenary Survey, eds. S. Hawking, W. Israel, Cambridge Univ. Press, Cambridge, 1979, 790–831 | MR
[5] M. Reuter, “Nonperturbative evolution equation for quantum gravity”, Phys. Rev. D, 57:2 (1998), 971–985, arXiv: hep-th/9605030 | DOI | MR
[6] S. D. Odintsov, “Does the Vilkovisky–De Witt effective action in quantum gravity depend on the configuration space metric?”, Phys. Lett. B, 262:4 (1991), 394–397 | DOI | MR
[7] A. O. Barvinsky, A. Yu. Kamenshchik, I. P. Karmazin, “The renormalization group for nonrenormalizable theories: Einstein gravity with a scalar field”, Phys. Rev. D, 48:8 (1993), 3677–3694, arXiv: gr-qc/9302007 | DOI
[8] P. Van Nieuwenhuizen, “Supergravity”, Phys. Rept., 68:4 (1981), 189–398 | DOI | MR
[9] Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson, R. Roiban, “Amplitudes and ultraviolet behavior of $\mathscr N=8$ supergravity”, Fortsch. Phys., 59:7–8 (2011), 561–578, arXiv: 1103.1848 | DOI | MR
[10] A. Ashtekar, “New variables for classical and quantum gravity”, Phys. Rev. Lett., 57:18 (1986), 2244–2247 | DOI | MR
[11] T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge Univ. Press, Cambridge, 2007, arXiv: gr-qc/0110034 | DOI | MR
[12] J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, “Nonperturbative Quantum Gravity”, Phys. Rept., 519:4–5 (2012), 127–210, arXiv: 1203.3591 | DOI | MR
[13] G. Calcagni, “Introduction to multifractional spacetimes”, AIP Conf. Proc., 1483 (2012), 31–53, arXiv: 1209.1110 | DOI
[14] J. F. Donoghue, B. R. Holstein, “Low energy theorems of quantum gravity from effective field theory”, J. Phys. G, 42:10 (2015), 103102, 46 pp., arXiv: 1506.00946 | DOI
[15] J. W. York, Jr., “Role of conformal three-geometry in the dynamics of gravitation”, Phys. Rev. Lett., 28:16 (1972), 1082–1085 | DOI
[16] V. Moncrief, “Reduction of the Einstein equations in $(2+1)$-dimensions to a Hamiltonian system over Teichmüller space”, J. Math. Phys., 30:12 (1989), 2907–2914 | DOI | MR
[17] A. E. Fischer, V. Moncrief, “Hamiltonian reduction of Einstein's equations of general relativity”, Nucl. Phys. Proc. Suppl., 57:1–3 (1997), 142–161 | DOI | MR
[18] F. Gay-Balmaz, T. S. Ratiu, “A new Lagrangian dynamic reduction in field theory”, Ann. Inst. Fourier, 60:3 (2010), 1125–1160, arXiv: 1407.0263 | MR | Zbl
[19] I. Y. Park, “Hypersurface foliation approach to renormalization of ADM formulation of gravity”, Eur. Phys. J. C, 75:9 (2015), 459, 11 pp., arXiv: 1404.5066 | DOI
[20] M. Sato, A. Tsuchiya, “Born–Infeld action from supergravity”, Progr. Theoret. Phys., 109:4 (2003), 687–707, arXiv: hep-th/0211074 | DOI | MR
[21] I. Y. Park, “Dimensional reduction to hypersurface of foliation”, Fortsch. Phys., 62:1–12 (2014), 966–974, arXiv: 1310.2507 | DOI | MR
[22] S. D. Odintsov, I. N. Shevchenko, “Gauge-invariant and gauge-fixing independent effective action in one-loop quantum gravity”, Fortsch. Phys., 41:8 (1993), 719–736 ; С. Д. Одинцов, И. Н. Шевченко, “Проблемы с калибровочно-инвариантным эффективным действием, не зависящим от выбора калибровки”, ЯФ, 55:4 (1992), 1136-1145 | DOI | MR
[23] S. R. Huggins, G. Kunstatter, H. P. Leivo, D. J. Toms, “The Vilkovisky–de Witt effective action for quantum gravity”, Nucl. Phys. B, 301:4 (1988), 627–660 | DOI | MR
[24] G. A. Vilkovisky, “The unique effective action in quantum field theory”, Nucl. Phys. B, 234:1 (1984), 125–137 | DOI
[25] E. S. Fradkin, A. A. Tseytlin, “On the new definition of off-shell effective action”, Nucl. Phys. B, 234:2 (1984), 509–523 | DOI
[26] S. D. Odintsov, “The parametrization invariant and gauge invariant effective actions in quantum field theory”, Fortsch. Phys., 38:5 (1990), 371–391 | DOI
[27] I. L. Buchbinder, S. D. Odintsov, I. L. Shapiro, Effective Action in Quantum Gravity, IOP Publ., Bristol, 1992 | MR
[28] R. E. Kallosh, O. V. Tarasov, I. V. Tyutin, “One-loop finiteness of quantum gravity off mass shell”, Nucl. Phys. B, 137:1–2 (1978), 145–163 | DOI | MR
[29] D. M. Capper, J. J. Dulwich, M. Ramon Medrano, “The background field method for quantum gravity at two loops”, Nucl. Phys. B, 254 (1985), 737–746 | DOI
[30] I. Antoniadis, J. Iliopoulos, T. N. Tomaras, “One-loop effective action around de Sitter space”, Nucl. Phys. B, 462:2–3 (1996), 437–452, arXiv: hep-th/9510112 | DOI | MR
[31] K. Kuchar̆, “Ground state functional of the linearized gravitational field”, J. Math. Phys., 11:12 (1970), 3322–3334 | DOI
[32] G. W. Gibbons, S. W. Hawking, M. J. Perry, “Path integrals and the indefiniteness of the gravitational action”, Nucl. Phys. B, 138:1 (1978), 141–150 | DOI | MR
[33] P. O. Mazur, E. Mottola, “The path integral measure, conformal factor problem and stability of the ground state of quantum gravity”, Nucl. Phys. B, 341:1 (1990), 187–212 | DOI | MR
[34] I. Y. Park, “Foliation, jet bundle and quantization of Einstein gravity”, Front. Phys., 4 (2016), 25, 14 pp., arXiv: 1503.02015 | DOI
[35] G. 't Hooft, M. J. G. Veltman, “One-loop divergencies in the theory of gravitation”, Ann. Inst. Henri Poincaré Sect. A (N. S.), 20:1 (1974), 69–94 | MR
[36] S. Deser, P. van Nieuwenhuizen, “One-loop divergences of quantized Einstein–Maxwell fields”, Phys. Rev. D, 10:2 (1974), 401–410 | DOI | MR
[37] M. H. Goroff, A. Sagnotti, “The ultraviolet behavior of Einstein gravity”, Nucl. Phys. B, 266:3–4 (1986), 709–736 | DOI
[38] I. Y. Park, “Holographic quantization of gravity in a black hole background”, J. Math. Phys., 57:2 (2016), 022305, 16 pp., arXiv: 1508.03874 | DOI | MR
[39] I. Y. Park, “Lagrangian constraints and renormalization of 4D gravity”, JHEP, 04 (2015), 053, 30 pp., arXiv: 1412.1528 | DOI | MR
[40] V. I. Ogievetsky, I. V. Polubarinov, “Interacting field of spin 2 and the Einstein equations”, Ann. Phys., 35:2 (1965), 167–208 | DOI
[41] N. Grillo, Quantization of the graviton field, characterization of the physical subspace and unitarity in causal quantum gravity, arXiv: hep-th/9911118
[42] T. Ortín, Gravity and Strings, Cambridge Univ. Press, Cambridge, 2004 | MR
[43] D. M. Capper, G. Leibbrandt, M. Ramón Medrano, “Calculation of the graviton self-energy using dimensional regularization”, Phys. Rev. D, 8:12 (1973), 4320–4331 | DOI
[44] I. Y. Park, “Quantization of gravity through hypersurface foliation”, arXiv: 1406.0753
[45] E. Hatefi, A. J. Nurmagambetov, I. Y. Park, “ADM reduction of IIB on $\mathcal{H}^{p,q}$ to dS braneworld”, JHEP, 04 (2013), 170, 24 pp., arXiv: 1210.3825 | MR
[46] A. Higuchi, “Quantum linearization instabilities of de Sitter spacetime. I”, Class. Quantum Grav., 8:1 (1991), 1961-1981 | MR
[47] R. L. Arnowitt, S. Deser, C. W. Misner, “Republication of: The dynamics of general relativity”, Gen. Rel. Grav., 40:9 (2008), 1997–2027, arXiv: gr-qc/0405109 | DOI
[48] E. Poisson, A Relativist's Toolkit. The Mathematics of Black-Hole Mechanics, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR
[49] I. Y. Park, “One-loop renormalization of a gravity-scalar system”, Eur. Phys. J. C, 77:5 (2017), 337, 20 pp., arXiv: 1606.08384 | DOI
[50] S. Weinberg, The Quantum Theory of Fields, v. II, Modern Applications, Cambridge Univ. Press, Cambridge, 1996 | DOI | MR
[51] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, 85, Oxford Univ. Press, New York, 1996 | MR
[52] G. Sterman, An Introduction to Quantum Field Theory, Cambridge Univ. Press, Cambridge, 1993
[53] G. 't Hooft, “An algorithm for the poles at dimension four in the dimensional regularization procedure”, Nucl. Phys. B, 62 (1973), 444–460 | DOI