Four-dimensional covariance of Feynman diagrams in Einstein gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 288-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It was previously noted that physical states in terms of the ADM formalism in the framework of four-dimensional (4D) Einstein gravity holographically reduce and can be described as three-dimensional (3D). Obviously, a problem with 4D covariance arises with such an approach; it turns out that there are two such problems with covariance. We consider methods for solving these problems. Although the unphysical character of the trace part of the fluctuation metric has long been known, it has not been considered from the standpoint of applying Feynman diagrams for computations. A proper method for treating the trace part with gauge-fixing is the key to resolving subtle covariance issues. Regarding the second problem, it turned out that a covariant renormalization can be performed to any loop order in the intermediate steps, which preserves the 4D covariance. Only at the final stage is it necessary to consider 3D physical external states. With physical external states, the one-particle-irreducible effective action becomes 3D, and renormalizability is ensured just as in the 3D case. We present the one-loop two-point renormalization with careful attention to the trace part of the fluctuation metric. In particular, we describe the one-loop renormalization of the Newton constant.
Keywords: trace part of fluctuation metric, Feynman diagram, renormalization.
@article{TMF_2018_195_2_a8,
     author = {I. Y. Park},
     title = {Four-dimensional covariance of {Feynman} diagrams in {Einstein} gravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {288--312},
     year = {2018},
     volume = {195},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a8/}
}
TY  - JOUR
AU  - I. Y. Park
TI  - Four-dimensional covariance of Feynman diagrams in Einstein gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 288
EP  - 312
VL  - 195
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a8/
LA  - ru
ID  - TMF_2018_195_2_a8
ER  - 
%0 Journal Article
%A I. Y. Park
%T Four-dimensional covariance of Feynman diagrams in Einstein gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 288-312
%V 195
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a8/
%G ru
%F TMF_2018_195_2_a8
I. Y. Park. Four-dimensional covariance of Feynman diagrams in Einstein gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 288-312. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a8/

[1] B. S. DeWitt, “Quantum field theory in curved spacetime”, Phys. Rept., 19:6 (1975), 295–357 | DOI

[2] K. S. Stelle, “Renormalization of higher-derivative quantum gravity”, Phys. Rev. D, 16:4 (1977), 953–969 | DOI | MR

[3] I. Antoniadis, E. T. Tomboulis, “Gauge invariance and unitarity in higher-derivative quantum gravity”, Phys. Rev. D, 33:10 (1986), 2756–2779 | DOI

[4] S. Weinberg, “Ultraviolet divergences in quantum theories of gravitation”, General Relativity. An Einstein Centenary Survey, eds. S. Hawking, W. Israel, Cambridge Univ. Press, Cambridge, 1979, 790–831 | MR

[5] M. Reuter, “Nonperturbative evolution equation for quantum gravity”, Phys. Rev. D, 57:2 (1998), 971–985, arXiv: hep-th/9605030 | DOI | MR

[6] S. D. Odintsov, “Does the Vilkovisky–De Witt effective action in quantum gravity depend on the configuration space metric?”, Phys. Lett. B, 262:4 (1991), 394–397 | DOI | MR

[7] A. O. Barvinsky, A. Yu. Kamenshchik, I. P. Karmazin, “The renormalization group for nonrenormalizable theories: Einstein gravity with a scalar field”, Phys. Rev. D, 48:8 (1993), 3677–3694, arXiv: gr-qc/9302007 | DOI

[8] P. Van Nieuwenhuizen, “Supergravity”, Phys. Rept., 68:4 (1981), 189–398 | DOI | MR

[9] Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson, R. Roiban, “Amplitudes and ultraviolet behavior of $\mathscr N=8$ supergravity”, Fortsch. Phys., 59:7–8 (2011), 561–578, arXiv: 1103.1848 | DOI | MR

[10] A. Ashtekar, “New variables for classical and quantum gravity”, Phys. Rev. Lett., 57:18 (1986), 2244–2247 | DOI | MR

[11] T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge Univ. Press, Cambridge, 2007, arXiv: gr-qc/0110034 | DOI | MR

[12] J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, “Nonperturbative Quantum Gravity”, Phys. Rept., 519:4–5 (2012), 127–210, arXiv: 1203.3591 | DOI | MR

[13] G. Calcagni, “Introduction to multifractional spacetimes”, AIP Conf. Proc., 1483 (2012), 31–53, arXiv: 1209.1110 | DOI

[14] J. F. Donoghue, B. R. Holstein, “Low energy theorems of quantum gravity from effective field theory”, J. Phys. G, 42:10 (2015), 103102, 46 pp., arXiv: 1506.00946 | DOI

[15] J. W. York, Jr., “Role of conformal three-geometry in the dynamics of gravitation”, Phys. Rev. Lett., 28:16 (1972), 1082–1085 | DOI

[16] V. Moncrief, “Reduction of the Einstein equations in $(2+1)$-dimensions to a Hamiltonian system over Teichmüller space”, J. Math. Phys., 30:12 (1989), 2907–2914 | DOI | MR

[17] A. E. Fischer, V. Moncrief, “Hamiltonian reduction of Einstein's equations of general relativity”, Nucl. Phys. Proc. Suppl., 57:1–3 (1997), 142–161 | DOI | MR

[18] F. Gay-Balmaz, T. S. Ratiu, “A new Lagrangian dynamic reduction in field theory”, Ann. Inst. Fourier, 60:3 (2010), 1125–1160, arXiv: 1407.0263 | MR | Zbl

[19] I. Y. Park, “Hypersurface foliation approach to renormalization of ADM formulation of gravity”, Eur. Phys. J. C, 75:9 (2015), 459, 11 pp., arXiv: 1404.5066 | DOI

[20] M. Sato, A. Tsuchiya, “Born–Infeld action from supergravity”, Progr. Theoret. Phys., 109:4 (2003), 687–707, arXiv: hep-th/0211074 | DOI | MR

[21] I. Y. Park, “Dimensional reduction to hypersurface of foliation”, Fortsch. Phys., 62:1–12 (2014), 966–974, arXiv: 1310.2507 | DOI | MR

[22] S. D. Odintsov, I. N. Shevchenko, “Gauge-invariant and gauge-fixing independent effective action in one-loop quantum gravity”, Fortsch. Phys., 41:8 (1993), 719–736 ; С. Д. Одинцов, И. Н. Шевченко, “Проблемы с калибровочно-инвариантным эффективным действием, не зависящим от выбора калибровки”, ЯФ, 55:4 (1992), 1136-1145 | DOI | MR

[23] S. R. Huggins, G. Kunstatter, H. P. Leivo, D. J. Toms, “The Vilkovisky–de Witt effective action for quantum gravity”, Nucl. Phys. B, 301:4 (1988), 627–660 | DOI | MR

[24] G. A. Vilkovisky, “The unique effective action in quantum field theory”, Nucl. Phys. B, 234:1 (1984), 125–137 | DOI

[25] E. S. Fradkin, A. A. Tseytlin, “On the new definition of off-shell effective action”, Nucl. Phys. B, 234:2 (1984), 509–523 | DOI

[26] S. D. Odintsov, “The parametrization invariant and gauge invariant effective actions in quantum field theory”, Fortsch. Phys., 38:5 (1990), 371–391 | DOI

[27] I. L. Buchbinder, S. D. Odintsov, I. L. Shapiro, Effective Action in Quantum Gravity, IOP Publ., Bristol, 1992 | MR

[28] R. E. Kallosh, O. V. Tarasov, I. V. Tyutin, “One-loop finiteness of quantum gravity off mass shell”, Nucl. Phys. B, 137:1–2 (1978), 145–163 | DOI | MR

[29] D. M. Capper, J. J. Dulwich, M. Ramon Medrano, “The background field method for quantum gravity at two loops”, Nucl. Phys. B, 254 (1985), 737–746 | DOI

[30] I. Antoniadis, J. Iliopoulos, T. N. Tomaras, “One-loop effective action around de Sitter space”, Nucl. Phys. B, 462:2–3 (1996), 437–452, arXiv: hep-th/9510112 | DOI | MR

[31] K. Kuchar̆, “Ground state functional of the linearized gravitational field”, J. Math. Phys., 11:12 (1970), 3322–3334 | DOI

[32] G. W. Gibbons, S. W. Hawking, M. J. Perry, “Path integrals and the indefiniteness of the gravitational action”, Nucl. Phys. B, 138:1 (1978), 141–150 | DOI | MR

[33] P. O. Mazur, E. Mottola, “The path integral measure, conformal factor problem and stability of the ground state of quantum gravity”, Nucl. Phys. B, 341:1 (1990), 187–212 | DOI | MR

[34] I. Y. Park, “Foliation, jet bundle and quantization of Einstein gravity”, Front. Phys., 4 (2016), 25, 14 pp., arXiv: 1503.02015 | DOI

[35] G. 't Hooft, M. J. G. Veltman, “One-loop divergencies in the theory of gravitation”, Ann. Inst. Henri Poincaré Sect. A (N. S.), 20:1 (1974), 69–94 | MR

[36] S. Deser, P. van Nieuwenhuizen, “One-loop divergences of quantized Einstein–Maxwell fields”, Phys. Rev. D, 10:2 (1974), 401–410 | DOI | MR

[37] M. H. Goroff, A. Sagnotti, “The ultraviolet behavior of Einstein gravity”, Nucl. Phys. B, 266:3–4 (1986), 709–736 | DOI

[38] I. Y. Park, “Holographic quantization of gravity in a black hole background”, J. Math. Phys., 57:2 (2016), 022305, 16 pp., arXiv: 1508.03874 | DOI | MR

[39] I. Y. Park, “Lagrangian constraints and renormalization of 4D gravity”, JHEP, 04 (2015), 053, 30 pp., arXiv: 1412.1528 | DOI | MR

[40] V. I. Ogievetsky, I. V. Polubarinov, “Interacting field of spin 2 and the Einstein equations”, Ann. Phys., 35:2 (1965), 167–208 | DOI

[41] N. Grillo, Quantization of the graviton field, characterization of the physical subspace and unitarity in causal quantum gravity, arXiv: hep-th/9911118

[42] T. Ortín, Gravity and Strings, Cambridge Univ. Press, Cambridge, 2004 | MR

[43] D. M. Capper, G. Leibbrandt, M. Ramón Medrano, “Calculation of the graviton self-energy using dimensional regularization”, Phys. Rev. D, 8:12 (1973), 4320–4331 | DOI

[44] I. Y. Park, “Quantization of gravity through hypersurface foliation”, arXiv: 1406.0753

[45] E. Hatefi, A. J. Nurmagambetov, I. Y. Park, “ADM reduction of IIB on $\mathcal{H}^{p,q}$ to dS braneworld”, JHEP, 04 (2013), 170, 24 pp., arXiv: 1210.3825 | MR

[46] A. Higuchi, “Quantum linearization instabilities of de Sitter spacetime. I”, Class. Quantum Grav., 8:1 (1991), 1961-1981 | MR

[47] R. L. Arnowitt, S. Deser, C. W. Misner, “Republication of: The dynamics of general relativity”, Gen. Rel. Grav., 40:9 (2008), 1997–2027, arXiv: gr-qc/0405109 | DOI

[48] E. Poisson, A Relativist's Toolkit. The Mathematics of Black-Hole Mechanics, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR

[49] I. Y. Park, “One-loop renormalization of a gravity-scalar system”, Eur. Phys. J. C, 77:5 (2017), 337, 20 pp., arXiv: 1606.08384 | DOI

[50] S. Weinberg, The Quantum Theory of Fields, v. II, Modern Applications, Cambridge Univ. Press, Cambridge, 1996 | DOI | MR

[51] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, 85, Oxford Univ. Press, New York, 1996 | MR

[52] G. Sterman, An Introduction to Quantum Field Theory, Cambridge Univ. Press, Cambridge, 1993

[53] G. 't Hooft, “An algorithm for the poles at dimension four in the dimensional regularization procedure”, Nucl. Phys. B, 62 (1973), 444–460 | DOI