Congruence convergence in pp-wave space–time
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 269-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We argue that the well-known geodesic completeness property of pp-waves can be disregarded once the geodesics are extracted as being extended along sets of Brinkmann coordinates. We investigate this issue in the more general context of congruence convergence and show that the problem leads to various issues for nongeodesic congruences. Our consideration is mostly based on the null congruence expansion, and we also provide a generalized Raychaudhuri equation.
Keywords: gravitational wave, pp-wave, congruence expansion, generalized Raychaudhuri equation
Mots-clés : convergence.
@article{TMF_2018_195_2_a7,
     author = {M. Fathi and M. Mohseni},
     title = {Congruence convergence in pp-wave space{\textendash}time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {269--287},
     year = {2018},
     volume = {195},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a7/}
}
TY  - JOUR
AU  - M. Fathi
AU  - M. Mohseni
TI  - Congruence convergence in pp-wave space–time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 269
EP  - 287
VL  - 195
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a7/
LA  - ru
ID  - TMF_2018_195_2_a7
ER  - 
%0 Journal Article
%A M. Fathi
%A M. Mohseni
%T Congruence convergence in pp-wave space–time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 269-287
%V 195
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a7/
%G ru
%F TMF_2018_195_2_a7
M. Fathi; M. Mohseni. Congruence convergence in pp-wave space–time. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 269-287. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a7/

[1] A. Einstein, “Zum gegenwärtigen Stande des Gravitationsproblems”, Phys. Z., 14 (1913), 1249–1262 | Zbl

[2] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, Mir, M., 1977 | MR

[3] B. P. Abbott, R. Abbott, T. D. Abbott et. al [LIGO Scientific Collab. and Virgo Collab.], “Observation of gravitational waves from a binary black hole merger”, Phys. Rev. Lett., 116:6 (2016), 06110, 16 pp. | DOI | MR

[4] L. Ryder, Introduction to General Relativity, Cambridge Univ. Press, Cambridge, 2009 | DOI

[5] B. F. Schutz, A First Course in General Relativity, Cambridge Univ. Press, Cambridge, 2009

[6] H. W. Brinkmann, “Einstein spaces which are mapped conformally on each other”, Math. Ann., 94:1 (1925), 119–145 | DOI | MR | Zbl

[7] O. R. Baldwin, G. B. Jeffery, “The relativity theory of plane waves”, Proc. R. Soc. Lond. A, 111:757 (1926), 95–104 | DOI | Zbl

[8] J. Ehlers, W. Kundt, “Exact solutions of the gravitational field equations”, The Theory of Gravitation, ed. L. Witten, John Wiley and Sons, New York, London, 1962, 49–101 | MR

[9] H. Stephani, D. Krame, M. Maccallum, C. Hoenselares, E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR

[10] J. W. van Holten, “Gravitational waves and black holes”, Fortschr. Phys., 45:6 (1997), 439–516 | DOI | MR | Zbl

[11] G. S. Hall, Symmetries and Curvature Structure in General Relativity, World Scientific Lecture Notes in Physics, 46, World Sci., Singapore, 2004 | DOI | MR

[12] J. L. Flores, M. Sánchez, “On the geometry of pp-wave type spacetimes”, Analytical and Numerical Approaches to Mathematical Relativity (Bad Honnef, Germany, March 1–5, 2004), Lecture Notes in Physics, 692, eds. J. Frauendiener, D. J. W. Giulini, V. Perlick, Springer, Berlin, 2006, 79–98 | DOI | MR | Zbl

[13] M. Gürses, M. Halil, “pp-waves in the generalized Einstein theories”, Phys. Lett. A, 68:2 (1978), 182–184 | DOI | MR

[14] A. Bayka, “pp-waves in modified gravity”, Turk. J. Phys., 40 (2016), 77–11, arXiv: 1510.00522 | DOI

[15] H-J. Schmidt, “A two-dimensional representation of four-dimensional gravitational waves”, Internat. J. Modern Phys. D, 7:2 (1998), 215–223 | DOI | MR | Zbl

[16] V. Daftardar-Gejji, “On conformally related $pp$-waves”, Pramana, 56:5 (2001), 591–596 | DOI

[17] A. J. Keane, B. O. J. Tuppe, “Conformal symmetry classes for pp-wave spacetimes”, Class. Quantum Grav., 21:8 (2004), 2037–2064 | DOI | MR | Zbl

[18] H. Singh, “Generalised Penrose limits and pp-waves”, Phys. Lett. B, 583:3–4 (2004), 315–323 | DOI | MR | Zbl

[19] J. D. Steele, On generalised p.p. waves\par , 2010 https://www.scribd.com/document/78988658/J-D-Steele-On-Generalised-p-p-waves

[20] B. Cropp, M. Visser, “Polarization modes for strong-field gravitational waves”, J. Phys.: Conf. Ser., 314:1 (2011), 012073, 4 pp. | DOI

[21] R. Milson, D. McNutt, A. Coley, “Invariant classification of vacuum pp-waves”, J. Math. Phys., 54:2 (2013), 022502, 29 pp. | DOI | MR

[22] R. Cianci, L. Fabbri, S. Vignolo, “Exact solutions for Weyl fermions with gravity”, Eur. Phys. J. C, 75:10 (2015), 478, 10 pp. | DOI

[23] E. Poisson, A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics, Cambridge Univ. Press, Cambridge, 2009 | DOI | MR

[24] V. Faraoni, Cosmological and Black Hole Apparent Horizons, Springer, Cham, 2015 | DOI | MR

[25] S. Kar, S. Sengupta, “The Raychaudhuri equations: A brief review”, Pramana, 69:1 (2007), 49–76 | DOI

[26] M. Fathi, M. Mohseni, “Gravitational collapse in repulsive $R+\mu^4/R$ gravity”, Eur. Phys. J. Plus, 131:10 (2016), 360, 20 pp. | DOI

[27] R. Penrose, “Gravitational collapse and space-time singularities”, Phys. Rev. Lett., 14:3 (1965), 57–59 | DOI | MR | Zbl

[28] S. W. Hawking, “Occurrence of singularities in open Universes”, Phys. Rev. Lett., 15:17 (1965), 689–690 | DOI | MR

[29] S. W. Hawking, “Singularities in the Universe”, Phys. Rev. Lett., 17:8 (1966), 444–445 | DOI

[30] R. Penrose, “Gravitational collapse: the role of general relativity”, Gen. Relat. Grav., 34:7 (2002), 1141–1165 | DOI | MR | Zbl