@article{TMF_2018_195_2_a6,
author = {R. Unanyan},
title = {Spectral gap of the~antiferromagnetic {Lipkin{\textendash}Meshkov{\textendash}Glick} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {256--268},
year = {2018},
volume = {195},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a6/}
}
R. Unanyan. Spectral gap of the antiferromagnetic Lipkin–Meshkov–Glick model. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 256-268. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a6/
[1] H. J. Lipkin, N. Meshkov, A. J. Glick, “Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory”, Nucl. Phys., 62:2 (1965), 188–198 | DOI | MR
[2] J. I. Cirac, M. Lewenstein, K. Mølmer, P. Zoller, “Quantum superposition states of Bose–Einstein condensates”, Phys. Rev. A, 57:2 (1998), 1208–1218 | DOI
[3] R. G. Unanyan, M. Fleischhauer, “Decoherence-free generation of many-particle entanglement by adiabatic ground-state transitions”, Phys. Rev. Lett., 90:13 (2003), 133601, 4 pp. ; R. G. Unanyan, C. Ionescu, M. Fleischhauer, “Many-particle entanglement in the gaped antiferromagnetic Lipkin model”, Phys. Rev. A, 72:2 (2005), 022326, 7 pp. | DOI | DOI
[4] J. Larson, “Circuit QED scheme for the realization of the Lipkin–Meshkov–Glick model”, Europhys. Lett., 90:5 (2010), 54001, 6 pp., arXiv: ; Y.-C. Zhang, X.-F. Zhou, X. Zhou, G.-C. Guo, Z.-W. Zhou, “Cavity-assisted single-mode and two-mode spin-squeezed states via phase-locked atom–photon coupling”, Phys. Rev. Lett., 118:8 (2017), 083604, 6 pp. 1004.5041 | DOI | DOI
[5] E. Witten, “Dynamical breaking of supersymmetry”, Nucl. Phys. B, 188:3 (1981), 513–554 ; Л. Э. Генденштейн, И. В. Криве, “Суперсимметрия в квантовой механике”, УФН, 146:4 (1985), 553–590 ; F. Cooper, A. Khare, U. Sukhatme, “Supersymmetry and quantum mechanics”, Phys. Rep., 267:5–6 (1995), 267–385 | DOI | Zbl | DOI | DOI | MR | DOI | MR
[6] A. Garg, “Quenched spin tunneling and diabolical points in magnetic molecules. I. Symmetric configurations”, Phys. Rev. B, 64:9 (2001), 094413, 15 pp. ; E. Keçecioǧlu, A. Garg, “$SU(2)$ instantons with boundary jumps and spin tunneling in magnetic molecules”, Phys. Rev. Lett., 88:23 (2002), 237205, 4 pp. | DOI | DOI
[7] C. Eckart, “The theory and calculation of screening constants”, Phys. Rev., 36:5 (1930), 878–892 | DOI
[8] L. Biedenharn, J. D. Louck, Angular Momentum in Quantum Physics. Theory and Application, Encyclopedia of Mathematics and its Applications, 8, Addison–Wesley, Reading, MA, 1981 ; Д. А. Варшалович, А. Н. Москалев, В. К. Херсонский, Квантовая теория углового момента, Наука, Л., 1975 | MR | MR
[9] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | MR | Zbl
[10] H. Weyl, “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)”, Math. Ann., 71:4 (1912), 441–479 ; W. Fulton, “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. Amer. Math. Soc. (N. S.), 37:3 (2000), 209–249 | DOI | MR | Zbl | DOI | MR | Zbl
[11] R. Blatt, C. F. Roos, “Quantum simulations with trapped ions”, Nature Phys., 8:4 (2012), 277–284 | DOI