Quasiaverages and degenerate quantum equilibriums of magnetic systems with $SU(3)$ symmetry of the exchange interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 240-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider magnetic systems with the $SU(3)$ symmetry of the exchange interaction. For degenerate equilibriums with broken magnetic and phase symmetries, we formulate classification equations for the order parameter using the concept of residual symmetry. Based on them, we obtain an explicit form of the equilibrium values of the order parameters of a spin nematic and an antiferromagnet in the general form. We clarify the existence conditions for six types of superfluid equilibriums for the order parameter describing the Bose pair condensate. We study inhomogeneous equilibriums and obtain the explicit coordinate dependence of the magnetic order parameters.
Keywords: equilibrium, order parameter, spin, unitary symmetry
Mots-clés : classification equation.
@article{TMF_2018_195_2_a5,
     author = {N. N. Bogolyubov (Jr.) and A. V. Glushchenko and M. Yu. Kovalevsky},
     title = {Quasiaverages and degenerate quantum equilibriums of magnetic systems with $SU(3)$ symmetry of the~exchange interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {240--255},
     year = {2018},
     volume = {195},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a5/}
}
TY  - JOUR
AU  - N. N. Bogolyubov (Jr.)
AU  - A. V. Glushchenko
AU  - M. Yu. Kovalevsky
TI  - Quasiaverages and degenerate quantum equilibriums of magnetic systems with $SU(3)$ symmetry of the exchange interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 240
EP  - 255
VL  - 195
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a5/
LA  - ru
ID  - TMF_2018_195_2_a5
ER  - 
%0 Journal Article
%A N. N. Bogolyubov (Jr.)
%A A. V. Glushchenko
%A M. Yu. Kovalevsky
%T Quasiaverages and degenerate quantum equilibriums of magnetic systems with $SU(3)$ symmetry of the exchange interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 240-255
%V 195
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a5/
%G ru
%F TMF_2018_195_2_a5
N. N. Bogolyubov (Jr.); A. V. Glushchenko; M. Yu. Kovalevsky. Quasiaverages and degenerate quantum equilibriums of magnetic systems with $SU(3)$ symmetry of the exchange interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 240-255. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a5/

[1] C. Lacroix, P. Mendels, F. Mila (eds.), Introduction to Frustrated Magnetism: Materials, Experiments, Theory, Springer Series in Solid-State Sciences, 164, Springer, Berlin, Heidelberg, 2011 | DOI

[2] A. Lauchli, F. Mila, K. Penc, “Quadrupolar phases of the $S=1$ bilinear-biquadratic Heisenberg model on the triangular lattice”, Phys. Rev. Lett., 97:8 (2006), 087205, 4 pp. | DOI

[3] P. Li, G.-M. Zhang, S.-Q. Shen, “$SU(3)$ bosons and the spin nematic state on the spin-1 bilinear-biquadratic triangular lattice”, Phys. Rev. B, 75:10 (2007), 104420, 8 pp. | DOI

[4] P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani, G. H. Lander, “Multipolar interactions in $f$-electron systems: the paradigm of actinide dioxides”, Rev. Modern Phys., 81:2 (2009), 807–863 | DOI

[5] M. E. Zhitomirsky, H. Tsunetsugu, “Magnon pairing in quantum spin nematic”, Europhys. Lett., 92:3 (2010), 37001 | DOI

[6] V. G. Bar'yakhtar, V. I. Butrim, A. K. Kolezhuk, B. A. Ivanov, “Dynamics and relaxation in spin nematics”, Phys. Rev. B, 87:22 (2013), 224407, 9 pp. | DOI

[7] T. Zibold, V. Corre, C. Frapolli, A. Invernizzi, J. Dalibard, F. Gerbier, “Spin-nematic order in antiferromagnetic spinor condensates”, Phys. Rev. A, 93:2 (2016), 023614, 13 pp. | DOI

[8] T.-L. Ho, “Spinor bose condensates in optical traps”, Phys. Rev. Lett., 81:4 (1998), 742–745 | DOI

[9] T. Ohmi, T. Machida, “Bose–Einstein condensation with internal degrees of freedom in alkali atom gases”, J. Phys. Soc. Japan, 67 (1998), 1822–1825 | DOI

[10] R. Barnett, A. Turner, E. Demler, “Classifying novel phases of spinor atoms”, Phys. Rev. Lett., 97:18 (2006), 180412, 4 pp., arXiv: cond-mat/0607253 | DOI

[11] L. Michel, “Symmetry defects and broken symmetry. Configurations Hidden symmetry”, Rev. Modern Phys., 52:3 (1980), 617–651 | DOI | MR

[12] V. P. Mineev, Topologicheski ustoichivye neodnorodnye sostoyaniya v uporyadochennykh sredakh, Preprint ITF im. L. D. Landau, ITF, Chernogolovka, 1980

[13] H. Mäkela, K. A. Suominen, “Inert states of spin-$S$ systems”, Phys. Rev. Lett., 99:19 (2007), 190408, 4 pp. | DOI

[14] S.-K. Yip, “Symmetry and inert states of spin Bose–Einstein condensates”, Phys. Rev. A, 75:2 (2007), 023625, 9 pp. | DOI

[15] Y. Kawaguchi, M. Ueda, “Spinor Bose–Einstein condensates”, Phys. Rep., 520:5 (2012), 253–381 | DOI | MR

[16] F. Zhou, M. Snoek, “Spin singlet Mott states and evidence for spin singlet quantum condensates of spin-one bosons in lattices”, Ann. Phys., 308:2 (2003), 692–738 | DOI | MR | Zbl

[17] Y.-Q. Li, S.-J. Gu, Z.-J. Ying, “One-dimensional $SU(3)$ bosons with $\delta$-function interaction”, J. Phys. A: Math. Gen., 36:11 (2003), 2821–2838 | DOI | MR | Zbl

[18] C. M. Puetter, M. J. Lawler, H.-Y. Kee, “Theory of the spin-nematic to spin-Peierls quantum phase transition in ultracold spin-1 atoms in optical lattices”, Phys. Rev. B, 78:16 (2008), 165121, 6 pp. | DOI

[19] N. N. Bogolyubov, Kvazisrednie v zadachakh statisticheskoi mekhaniki, Preprint D-781, OIYaI, Dubna, 1961

[20] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR

[21] N. N. Bogolyubov,(ml.), M. Yu. Kovalevskii, A. M. Kurbatov, S. V. Peletminskii, A. N. Tarasov, “K mikroskopicheskoi teorii sverkhtekuchikh zhidkostei”, UFN, 159:4 (1989), 585–620 | DOI | DOI

[22] M. Yu. Kovalevskii, S. V. Peletminskii, “Statisticheskaya mekhanika kvantovykh zhidkostei s tripletnym sparivaniem”, EChAYa, 33:6 (2002), 1357–1442

[23] N. N. Bogolyubov Jr., D. A. Demyanenko, M. Y. Kovalevsky, N. N. Chekanova, “Quasiaverages and classification of equilibrium states of condensed media with spontaneously broken symmetry”, Phys. Atom. Nucl., 72:5 (2009), 761–767 | DOI

[24] M. Yu. Kovalevskii, “O klassifikatsii magnitnykh i sverkhtekuchikh sostoyanii ravnovesiya v magnetikakh so spinom $s=1$”, TMF, 186 (2016), 456–474 | DOI | DOI | MR

[25] N. Papanicolaou, “Unusual phases in quantum spin-1 systems”, Nucl. Phys. B, 305:3 (1988), 367–395 | DOI | MR

[26] M. Yu. Kovalevskii, S. V. Peletminskii, Statisticheskaya mekhanika kvantovykh zhidkostei i kristallov, Fizmatlit, M., 2006

[27] N. N. Bogolyubov, “K teorii sverkhtekuchesti”, Izv. AN SSSR. Ser. fiz., 11 (1947), 77–90

[28] E. P. Gross, “Quantum theory of interacting bosons”, Ann. Phys., 9 (1960), 292–324 | DOI | MR | Zbl

[29] A. S. Peletminskii, S. V. Peletminskii, Yu. M. Poluektov, “Role of single-particle and pair condensates in Bose systems with arbitrary intensity of interaction”, Condens. Matter Phys., 16:1 (2013), 13603, 17 pp., arXiv: 1303.5539 | DOI

[30] I. V. Bogoyavlenskii, L. V. Karnatsevich, Zh. A. Kozlov, A. V. Puchkov, “Boze-kondensatsiya v zhidkom ${}^4$Ne”, FNT, 16:2 (1990), 139–162

[31] H. R. Glyde, S. O. Diallo, R. T. Azuah, O. Kirichek, J. W. Taylor, “Bose–Einstein condensation in liquid ${}^4$He under pressure”, Phys. Rev. B, 83:10 (2011), 100507, 4 pp. | DOI

[32] I. A. Vakarchuk, “Matritsy plotnosti sverkhtekuchego geliya-4. II”, TMF, 82:3 (1990), 438–449 | DOI

[33] A. I. Akhiezer, S. V. Peletminskii, Yu. V. Slyusarenko, “K teorii slaboneidealnogo boze-gaza v magnitnom pole”, ZhETF, 113:3 (1998), 918–929 | DOI

[34] N. D. Mermin, “$d$-Wave pairing near the transition temperature”, Phys. Rev. A, 9:2 (1974), 868–872 | DOI

[35] E. I. Kats, “Spontaneous chiral symmetry breaking in liquid crystals”, FNT, 43:1 (2017), 7–10 | DOI

[36] D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3, Taylor and Francis, London, New York, 1990

[37] I. E. Dzyaloshinskii, “Teoriya gelikoidalnykh struktur v antiferromagnetikakh. I. Nemetally”, ZhETF, 46:4 (1964), 1420–1437

[38] M. Yu. Kovalevskii, “Kvazisrednie v reshenii zadachi klassifikatsii sostoyanii ravnovesiya kondensirovannykh sred so spontanno narushennoi simmetriei”, TMF, 160:2 (2009), 290–303 | DOI | DOI | MR | Zbl