Mots-clés : classification equation.
@article{TMF_2018_195_2_a5,
author = {N. N. Bogolyubov (Jr.) and A. V. Glushchenko and M. Yu. Kovalevsky},
title = {Quasiaverages and degenerate quantum equilibriums of magnetic systems with $SU(3)$ symmetry of the~exchange interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {240--255},
year = {2018},
volume = {195},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a5/}
}
TY - JOUR AU - N. N. Bogolyubov (Jr.) AU - A. V. Glushchenko AU - M. Yu. Kovalevsky TI - Quasiaverages and degenerate quantum equilibriums of magnetic systems with $SU(3)$ symmetry of the exchange interaction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 240 EP - 255 VL - 195 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a5/ LA - ru ID - TMF_2018_195_2_a5 ER -
%0 Journal Article %A N. N. Bogolyubov (Jr.) %A A. V. Glushchenko %A M. Yu. Kovalevsky %T Quasiaverages and degenerate quantum equilibriums of magnetic systems with $SU(3)$ symmetry of the exchange interaction %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 240-255 %V 195 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a5/ %G ru %F TMF_2018_195_2_a5
N. N. Bogolyubov (Jr.); A. V. Glushchenko; M. Yu. Kovalevsky. Quasiaverages and degenerate quantum equilibriums of magnetic systems with $SU(3)$ symmetry of the exchange interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 240-255. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a5/
[1] C. Lacroix, P. Mendels, F. Mila (eds.), Introduction to Frustrated Magnetism: Materials, Experiments, Theory, Springer Series in Solid-State Sciences, 164, Springer, Berlin, Heidelberg, 2011 | DOI
[2] A. Lauchli, F. Mila, K. Penc, “Quadrupolar phases of the $S=1$ bilinear-biquadratic Heisenberg model on the triangular lattice”, Phys. Rev. Lett., 97:8 (2006), 087205, 4 pp. | DOI
[3] P. Li, G.-M. Zhang, S.-Q. Shen, “$SU(3)$ bosons and the spin nematic state on the spin-1 bilinear-biquadratic triangular lattice”, Phys. Rev. B, 75:10 (2007), 104420, 8 pp. | DOI
[4] P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani, G. H. Lander, “Multipolar interactions in $f$-electron systems: the paradigm of actinide dioxides”, Rev. Modern Phys., 81:2 (2009), 807–863 | DOI
[5] M. E. Zhitomirsky, H. Tsunetsugu, “Magnon pairing in quantum spin nematic”, Europhys. Lett., 92:3 (2010), 37001 | DOI
[6] V. G. Bar'yakhtar, V. I. Butrim, A. K. Kolezhuk, B. A. Ivanov, “Dynamics and relaxation in spin nematics”, Phys. Rev. B, 87:22 (2013), 224407, 9 pp. | DOI
[7] T. Zibold, V. Corre, C. Frapolli, A. Invernizzi, J. Dalibard, F. Gerbier, “Spin-nematic order in antiferromagnetic spinor condensates”, Phys. Rev. A, 93:2 (2016), 023614, 13 pp. | DOI
[8] T.-L. Ho, “Spinor bose condensates in optical traps”, Phys. Rev. Lett., 81:4 (1998), 742–745 | DOI
[9] T. Ohmi, T. Machida, “Bose–Einstein condensation with internal degrees of freedom in alkali atom gases”, J. Phys. Soc. Japan, 67 (1998), 1822–1825 | DOI
[10] R. Barnett, A. Turner, E. Demler, “Classifying novel phases of spinor atoms”, Phys. Rev. Lett., 97:18 (2006), 180412, 4 pp., arXiv: cond-mat/0607253 | DOI
[11] L. Michel, “Symmetry defects and broken symmetry. Configurations Hidden symmetry”, Rev. Modern Phys., 52:3 (1980), 617–651 | DOI | MR
[12] V. P. Mineev, Topologicheski ustoichivye neodnorodnye sostoyaniya v uporyadochennykh sredakh, Preprint ITF im. L. D. Landau, ITF, Chernogolovka, 1980
[13] H. Mäkela, K. A. Suominen, “Inert states of spin-$S$ systems”, Phys. Rev. Lett., 99:19 (2007), 190408, 4 pp. | DOI
[14] S.-K. Yip, “Symmetry and inert states of spin Bose–Einstein condensates”, Phys. Rev. A, 75:2 (2007), 023625, 9 pp. | DOI
[15] Y. Kawaguchi, M. Ueda, “Spinor Bose–Einstein condensates”, Phys. Rep., 520:5 (2012), 253–381 | DOI | MR
[16] F. Zhou, M. Snoek, “Spin singlet Mott states and evidence for spin singlet quantum condensates of spin-one bosons in lattices”, Ann. Phys., 308:2 (2003), 692–738 | DOI | MR | Zbl
[17] Y.-Q. Li, S.-J. Gu, Z.-J. Ying, “One-dimensional $SU(3)$ bosons with $\delta$-function interaction”, J. Phys. A: Math. Gen., 36:11 (2003), 2821–2838 | DOI | MR | Zbl
[18] C. M. Puetter, M. J. Lawler, H.-Y. Kee, “Theory of the spin-nematic to spin-Peierls quantum phase transition in ultracold spin-1 atoms in optical lattices”, Phys. Rev. B, 78:16 (2008), 165121, 6 pp. | DOI
[19] N. N. Bogolyubov, Kvazisrednie v zadachakh statisticheskoi mekhaniki, Preprint D-781, OIYaI, Dubna, 1961
[20] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR
[21] N. N. Bogolyubov,(ml.), M. Yu. Kovalevskii, A. M. Kurbatov, S. V. Peletminskii, A. N. Tarasov, “K mikroskopicheskoi teorii sverkhtekuchikh zhidkostei”, UFN, 159:4 (1989), 585–620 | DOI | DOI
[22] M. Yu. Kovalevskii, S. V. Peletminskii, “Statisticheskaya mekhanika kvantovykh zhidkostei s tripletnym sparivaniem”, EChAYa, 33:6 (2002), 1357–1442
[23] N. N. Bogolyubov Jr., D. A. Demyanenko, M. Y. Kovalevsky, N. N. Chekanova, “Quasiaverages and classification of equilibrium states of condensed media with spontaneously broken symmetry”, Phys. Atom. Nucl., 72:5 (2009), 761–767 | DOI
[24] M. Yu. Kovalevskii, “O klassifikatsii magnitnykh i sverkhtekuchikh sostoyanii ravnovesiya v magnetikakh so spinom $s=1$”, TMF, 186 (2016), 456–474 | DOI | DOI | MR
[25] N. Papanicolaou, “Unusual phases in quantum spin-1 systems”, Nucl. Phys. B, 305:3 (1988), 367–395 | DOI | MR
[26] M. Yu. Kovalevskii, S. V. Peletminskii, Statisticheskaya mekhanika kvantovykh zhidkostei i kristallov, Fizmatlit, M., 2006
[27] N. N. Bogolyubov, “K teorii sverkhtekuchesti”, Izv. AN SSSR. Ser. fiz., 11 (1947), 77–90
[28] E. P. Gross, “Quantum theory of interacting bosons”, Ann. Phys., 9 (1960), 292–324 | DOI | MR | Zbl
[29] A. S. Peletminskii, S. V. Peletminskii, Yu. M. Poluektov, “Role of single-particle and pair condensates in Bose systems with arbitrary intensity of interaction”, Condens. Matter Phys., 16:1 (2013), 13603, 17 pp., arXiv: 1303.5539 | DOI
[30] I. V. Bogoyavlenskii, L. V. Karnatsevich, Zh. A. Kozlov, A. V. Puchkov, “Boze-kondensatsiya v zhidkom ${}^4$Ne”, FNT, 16:2 (1990), 139–162
[31] H. R. Glyde, S. O. Diallo, R. T. Azuah, O. Kirichek, J. W. Taylor, “Bose–Einstein condensation in liquid ${}^4$He under pressure”, Phys. Rev. B, 83:10 (2011), 100507, 4 pp. | DOI
[32] I. A. Vakarchuk, “Matritsy plotnosti sverkhtekuchego geliya-4. II”, TMF, 82:3 (1990), 438–449 | DOI
[33] A. I. Akhiezer, S. V. Peletminskii, Yu. V. Slyusarenko, “K teorii slaboneidealnogo boze-gaza v magnitnom pole”, ZhETF, 113:3 (1998), 918–929 | DOI
[34] N. D. Mermin, “$d$-Wave pairing near the transition temperature”, Phys. Rev. A, 9:2 (1974), 868–872 | DOI
[35] E. I. Kats, “Spontaneous chiral symmetry breaking in liquid crystals”, FNT, 43:1 (2017), 7–10 | DOI
[36] D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3, Taylor and Francis, London, New York, 1990
[37] I. E. Dzyaloshinskii, “Teoriya gelikoidalnykh struktur v antiferromagnetikakh. I. Nemetally”, ZhETF, 46:4 (1964), 1420–1437
[38] M. Yu. Kovalevskii, “Kvazisrednie v reshenii zadachi klassifikatsii sostoyanii ravnovesiya kondensirovannykh sred so spontanno narushennoi simmetriei”, TMF, 160:2 (2009), 290–303 | DOI | DOI | MR | Zbl