Asymptotic analysis of multilump solutions of the~Kadomtsev--Petviashvili-I equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 209-224
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct lump solutions of the Kadomtsev–Petviashvili-I equation using Grammian determinants in the spirit of the works by Ohta and Yang. We show that the peak locations depend on the real roots of the Wronskian of the orthogonal polynomials for the asymptotic behaviors in some particular cases. We also prove that if the time goes to $-\infty$, then all the peak locations are on a vertical line, while if the time goes to $\infty$, then they are all on a horizontal line, i.e., a $\pi/2$ rotation is observed after interaction.
Keywords:
Grammian determinant, lumps solutions, Wronskian.
Mots-clés : orthogonal polynomials
Mots-clés : orthogonal polynomials
@article{TMF_2018_195_2_a3,
author = {Jen-Hsu Chang},
title = {Asymptotic analysis of multilump solutions of {the~Kadomtsev--Petviashvili-I} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {209--224},
publisher = {mathdoc},
volume = {195},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a3/}
}
TY - JOUR AU - Jen-Hsu Chang TI - Asymptotic analysis of multilump solutions of the~Kadomtsev--Petviashvili-I equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 209 EP - 224 VL - 195 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a3/ LA - ru ID - TMF_2018_195_2_a3 ER -
Jen-Hsu Chang. Asymptotic analysis of multilump solutions of the~Kadomtsev--Petviashvili-I equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a3/