Asymptotic analysis of multilump solutions of the Kadomtsev–Petviashvili-I equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 209-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct lump solutions of the Kadomtsev–Petviashvili-I equation using Grammian determinants in the spirit of the works by Ohta and Yang. We show that the peak locations depend on the real roots of the Wronskian of the orthogonal polynomials for the asymptotic behaviors in some particular cases. We also prove that if the time goes to $-\infty$, then all the peak locations are on a vertical line, while if the time goes to $\infty$, then they are all on a horizontal line, i.e., a $\pi/2$ rotation is observed after interaction.
Keywords: Grammian determinant, lumps solutions, Wronskian.
Mots-clés : orthogonal polynomials
@article{TMF_2018_195_2_a3,
     author = {Jen-Hsu Chang},
     title = {Asymptotic analysis of multilump solutions of {the~Kadomtsev{\textendash}Petviashvili-I} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {209--224},
     year = {2018},
     volume = {195},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a3/}
}
TY  - JOUR
AU  - Jen-Hsu Chang
TI  - Asymptotic analysis of multilump solutions of the Kadomtsev–Petviashvili-I equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 209
EP  - 224
VL  - 195
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a3/
LA  - ru
ID  - TMF_2018_195_2_a3
ER  - 
%0 Journal Article
%A Jen-Hsu Chang
%T Asymptotic analysis of multilump solutions of the Kadomtsev–Petviashvili-I equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 209-224
%V 195
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a3/
%G ru
%F TMF_2018_195_2_a3
Jen-Hsu Chang. Asymptotic analysis of multilump solutions of the Kadomtsev–Petviashvili-I equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a3/

[1] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, V. B. Matveev, “Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction”, Phys. Lett. A, 63:3 (1977), 205–206 | DOI

[2] M. J. Ablowitz, S. Chakravarty, A. D. Trubatch, J. Villarroel, “A noval class of solutions of the non-stationary Schrödinger and the Kadomtsev–Petviashvilli I equation”, Phys. Lett. A, 267:2–3 (2000), 132–146 | DOI | MR | Zbl

[3] M. J. Ablowitz, J. Villarroel, “On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev–Petviashvili I equation”, Comm. Math. Phys., 207:1 (1999), 1–42 | DOI | MR | Zbl

[4] B. G. Konopelchenko, Introduction to Multidimensional Integrable Equations. The Inverse Spectral Transform in $2+1$ Dimensions, Springer, Boston, MA, 1992 | DOI | MR

[5] M. Mañas, P. M. Santini, “Solutions of the Davey–Stewartson II equation with arbitrary rational localization and nontrivial interaction”, Phys. Lett. A, 227:5–6 (1997), 325–334 | DOI | MR | Zbl

[6] S. Chakravarty, T. Lewkow, K.-I. Maruno, “On the construction of the KP line-solitons and their interactions”, Appl. Anal., 89:4 (2010), 529–545, arXiv: 0911.2290 | DOI | MR | Zbl

[7] S. Chakravarty, Y. Kodama, “Soliton solutions of the KP equation and application to shallow water waves”, Stud. Appl. Math., 123:1 (2009), 83–151, arXiv: 0902.4423 | DOI | MR | Zbl

[8] Y. Kodama, “KP solitons in shallow water”, J. Phys. A: Math. Theor., 43:43 (2010), 434004, 54 pp., arXiv: 1004.4607 | DOI | MR

[9] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR

[10] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR

[11] V. S. Dryuma, “Ob analiticheskom reshenii dvumernogo uravneniya Kortevega–de Friza”, Pisma v ZhETF, 19:12 (1974), 753–755

[12] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | MR | Zbl

[13] V. B. Matveev, M. A. Salle, “On some class of new solutions of the KP equation and Johnson equation”, Some Topics in Inverse Problems (Montpellier, France, November 30 – December 4, 1987), ed. P. C. Sabatier, World Sci., Singapore, 1988, 182–212

[14] Y. Ohta, J. Yang, “General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation”, Proc. Roy. Soc. London Ser. A, 468:2142 (2012), 1716–1740 | DOI | MR | Zbl

[15] Y. Ohta, J. K. Yang, “Rogue waves in the Davey–Stewartson I equation”, Phys. Rev. E, 86:3 (2012), 036604, 8 pp. | DOI

[16] V. B. Matveev, “Some comments on the rationl solutions of the Zakharov–Schabat equations”, Lett. Math. Phys., 3:6 (1979), 503–512 | DOI | MR | Zbl

[17] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge Univ. Press, Cambridge, 2009 | MR

[18] M. Á. García-Ferrero, D. Gómez-Ullate, “Oscillation theorems for the Wronskian of an arbitrary sequence of eigenfunctions of Schrödinger's equation”, Lett. Math. Phys., 105:4 (2015), 551–573 | DOI | MR | Zbl

[19] S. Karlin, G. Szegö, “On certain determinants whose elements are orthogonal polynomials”, J. Anal. Math., 8:1 (1960), 1–157 | DOI | MR

[20] P. Dubard, V. B. Matveev, “Multi-rogue waves solutions of the focusing NLS equation and the KP-I equation”, Nat. Hazards Earth Syst. Sci., 11 (2011), 667–672 | DOI | MR

[21] P. Dubard, V. B. Matveev, “Multi-rogue waves solutions: from the NLS to the KP-I equation”, Nonlinearity, 26:12 (2013), R93–R125 | DOI | MR | Zbl

[22] P. Gaillard, “Hierarchy of solutions to the NLS equation and multi-rogue waves”, J. Phys.: Conf. Ser., 574:1 (2015), 012031, 5 pp. | DOI