Mots-clés : orthogonal polynomials
@article{TMF_2018_195_2_a3,
author = {Jen-Hsu Chang},
title = {Asymptotic analysis of multilump solutions of {the~Kadomtsev{\textendash}Petviashvili-I} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {209--224},
year = {2018},
volume = {195},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a3/}
}
Jen-Hsu Chang. Asymptotic analysis of multilump solutions of the Kadomtsev–Petviashvili-I equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a3/
[1] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, V. B. Matveev, “Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction”, Phys. Lett. A, 63:3 (1977), 205–206 | DOI
[2] M. J. Ablowitz, S. Chakravarty, A. D. Trubatch, J. Villarroel, “A noval class of solutions of the non-stationary Schrödinger and the Kadomtsev–Petviashvilli I equation”, Phys. Lett. A, 267:2–3 (2000), 132–146 | DOI | MR | Zbl
[3] M. J. Ablowitz, J. Villarroel, “On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev–Petviashvili I equation”, Comm. Math. Phys., 207:1 (1999), 1–42 | DOI | MR | Zbl
[4] B. G. Konopelchenko, Introduction to Multidimensional Integrable Equations. The Inverse Spectral Transform in $2+1$ Dimensions, Springer, Boston, MA, 1992 | DOI | MR
[5] M. Mañas, P. M. Santini, “Solutions of the Davey–Stewartson II equation with arbitrary rational localization and nontrivial interaction”, Phys. Lett. A, 227:5–6 (1997), 325–334 | DOI | MR | Zbl
[6] S. Chakravarty, T. Lewkow, K.-I. Maruno, “On the construction of the KP line-solitons and their interactions”, Appl. Anal., 89:4 (2010), 529–545, arXiv: 0911.2290 | DOI | MR | Zbl
[7] S. Chakravarty, Y. Kodama, “Soliton solutions of the KP equation and application to shallow water waves”, Stud. Appl. Math., 123:1 (2009), 83–151, arXiv: 0902.4423 | DOI | MR | Zbl
[8] Y. Kodama, “KP solitons in shallow water”, J. Phys. A: Math. Theor., 43:43 (2010), 434004, 54 pp., arXiv: 1004.4607 | DOI | MR
[9] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR
[10] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR
[11] V. S. Dryuma, “Ob analiticheskom reshenii dvumernogo uravneniya Kortevega–de Friza”, Pisma v ZhETF, 19:12 (1974), 753–755
[12] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | MR | Zbl
[13] V. B. Matveev, M. A. Salle, “On some class of new solutions of the KP equation and Johnson equation”, Some Topics in Inverse Problems (Montpellier, France, November 30 – December 4, 1987), ed. P. C. Sabatier, World Sci., Singapore, 1988, 182–212
[14] Y. Ohta, J. Yang, “General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation”, Proc. Roy. Soc. London Ser. A, 468:2142 (2012), 1716–1740 | DOI | MR | Zbl
[15] Y. Ohta, J. K. Yang, “Rogue waves in the Davey–Stewartson I equation”, Phys. Rev. E, 86:3 (2012), 036604, 8 pp. | DOI
[16] V. B. Matveev, “Some comments on the rationl solutions of the Zakharov–Schabat equations”, Lett. Math. Phys., 3:6 (1979), 503–512 | DOI | MR | Zbl
[17] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge Univ. Press, Cambridge, 2009 | MR
[18] M. Á. García-Ferrero, D. Gómez-Ullate, “Oscillation theorems for the Wronskian of an arbitrary sequence of eigenfunctions of Schrödinger's equation”, Lett. Math. Phys., 105:4 (2015), 551–573 | DOI | MR | Zbl
[19] S. Karlin, G. Szegö, “On certain determinants whose elements are orthogonal polynomials”, J. Anal. Math., 8:1 (1960), 1–157 | DOI | MR
[20] P. Dubard, V. B. Matveev, “Multi-rogue waves solutions of the focusing NLS equation and the KP-I equation”, Nat. Hazards Earth Syst. Sci., 11 (2011), 667–672 | DOI | MR
[21] P. Dubard, V. B. Matveev, “Multi-rogue waves solutions: from the NLS to the KP-I equation”, Nonlinearity, 26:12 (2013), R93–R125 | DOI | MR | Zbl
[22] P. Gaillard, “Hierarchy of solutions to the NLS equation and multi-rogue waves”, J. Phys.: Conf. Ser., 574:1 (2015), 012031, 5 pp. | DOI