Generalized lattice Heisenberg magnet model and its quasideterminant soliton solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 197-208
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a Darboux transformation of a generalized lattice (or semidiscrete) Heisenberg magnet (GLHM) model. We define a Darboux transformation on solutions of the Lax pair and on solutions of the spin evolution equation of the GLHM model. The solutions are expressed in terms of quasideterminants. We give a general expression for $K$-soliton solutions in terms of quasideterminants. Finally, we obtain one- and two-soliton solutions of the GLHM model using quasideterminant properties.
Keywords:
discrete integrable system
Mots-clés : soliton, Darboux transformation.
Mots-clés : soliton, Darboux transformation.
@article{TMF_2018_195_2_a2,
author = {H. Wajahat A. Riaz and M. Hassan},
title = {Generalized lattice {Heisenberg} magnet model and its quasideterminant soliton solutions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {197--208},
publisher = {mathdoc},
volume = {195},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a2/}
}
TY - JOUR AU - H. Wajahat A. Riaz AU - M. Hassan TI - Generalized lattice Heisenberg magnet model and its quasideterminant soliton solutions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 197 EP - 208 VL - 195 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a2/ LA - ru ID - TMF_2018_195_2_a2 ER -
%0 Journal Article %A H. Wajahat A. Riaz %A M. Hassan %T Generalized lattice Heisenberg magnet model and its quasideterminant soliton solutions %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 197-208 %V 195 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a2/ %G ru %F TMF_2018_195_2_a2
H. Wajahat A. Riaz; M. Hassan. Generalized lattice Heisenberg magnet model and its quasideterminant soliton solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 197-208. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a2/