Generalized lattice Heisenberg magnet model and its quasideterminant soliton solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 197-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Darboux transformation of a generalized lattice (or semidiscrete) Heisenberg magnet (GLHM) model. We define a Darboux transformation on solutions of the Lax pair and on solutions of the spin evolution equation of the GLHM model. The solutions are expressed in terms of quasideterminants. We give a general expression for $K$-soliton solutions in terms of quasideterminants. Finally, we obtain one- and two-soliton solutions of the GLHM model using quasideterminant properties.
Keywords: discrete integrable system
Mots-clés : soliton, Darboux transformation.
@article{TMF_2018_195_2_a2,
     author = {H. Wajahat A. Riaz and M. Hassan},
     title = {Generalized lattice {Heisenberg} magnet model and its quasideterminant soliton solutions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {197--208},
     year = {2018},
     volume = {195},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a2/}
}
TY  - JOUR
AU  - H. Wajahat A. Riaz
AU  - M. Hassan
TI  - Generalized lattice Heisenberg magnet model and its quasideterminant soliton solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 197
EP  - 208
VL  - 195
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a2/
LA  - ru
ID  - TMF_2018_195_2_a2
ER  - 
%0 Journal Article
%A H. Wajahat A. Riaz
%A M. Hassan
%T Generalized lattice Heisenberg magnet model and its quasideterminant soliton solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 197-208
%V 195
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a2/
%G ru
%F TMF_2018_195_2_a2
H. Wajahat A. Riaz; M. Hassan. Generalized lattice Heisenberg magnet model and its quasideterminant soliton solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 197-208. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a2/

[1] L. A. Takhtajan, “Integration of the continuous Heisenberg spin chain through the inverse scattering method”, Phys. Lett. A, 64:2 (1977), 235–237 | DOI | MR

[2] L. A. Takhtadzhan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR

[3] S. J. Orfanidis, “$\mathrm{SU}(n)$ Heisenberg spin chain”, Phys. Lett. A, 75:4 (1980), 304–306 | DOI | MR

[4] J. Honerkamp, “Gauge equivalence of exactly integrable field theoretic models”, J. Math. Phys., 22:2 (1981), 277–281 | DOI | MR | Zbl

[5] L. D. Faddeev, “Integrable models in $(1+1)$-dimensional quantum field theory”, Recent Advances in Field Theory and Statistical Mechanics (Les Houches, August 2 – September 10, 1982), eds. J.-B. Zuber, R. Stora, North-Holland, Amsterdam, 1984, 561–608 | MR

[6] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. analiz i ego pril., 16:4 (1982), 27–34 | DOI | MR | Zbl

[7] Y. Ishimori, “An integrable classical spin chain”, J. Phys. Soc. Japan, 51:11 (1982), 3417–3418 | DOI | MR

[8] F. D. M. Haldane, “Excitation spectrum of a generalized Heisenberg ferromagnet spin chain with arbitrary spin”, J. Phys. C: Solid State Phys., 15:36 (1982), L1309–L1313 | DOI

[9] R. Balakrishnan, A. R. Bishop, “Nonlinear excitations on a ferromagnetic chain”, Phys. Rev. Lett., 55:5 (1985), 537–540 | DOI | MR

[10] F. D. M. Haldane, “Geometrical interpretation of momentum and crystal momentum of classical and quantum ferromagnetic Heisenberg chains”, Phys. Rev. Lett., 57:12 (1986), 1488–1491 | DOI

[11] G. R. W. Quispel, F. W. Nijhoff, H. W. Capel, J. van der Linden, “Linear integral equations and nonlinear difference-difference equations”, Phys. A, 125 (1984), 344–380 | DOI | MR | Zbl

[12] V. S. Gerdjikov, M. I. Ivanov, Y. S. Vaklev, “Gauge transformations and generating operators for the discrete Zakharov–Shabat system”, Inverse Problems, 2:4 (1986), 413–432 | DOI | MR | Zbl

[13] N. Papanicolaou, “Complete integrabiblity for a discrete Heisenberg chain”, J. Phys. A: Math. Gen., 20:12 (1987), 3637–3652 | DOI | MR | Zbl

[14] T. Tsuchida, “A systematic method for constructing time discretizations of integrable lattice systems: local equations of motion”, J. Phys. A: Math. Theor., 43:41 (2010), 415202, 22 pp. | DOI | MR | Zbl

[15] A. Calini, “A note on a Bäcklund transformation for the continuous Heisenberg model”, Phys. Lett. A, 203:5–6 (1995), 333–344 | DOI | MR | Zbl

[16] H. J. Shin, “Generalized Heisenberg ferromagnetic models via Hermitian symmetric spaces”, J. Phys. A: Math. Gen., 34:14 (2001), 3169–3177 | DOI | MR | Zbl

[17] G. M. Pritula, V. E. Vekslerchik, “Stationary structures in two-dimensional continuous Heisenberg ferromagnetic spin system”, J. Nonlinear Math. Phys., 10:3 (2003), 256–281 | DOI | MR | Zbl

[18] H. J. Shin, “SIT-NLS solitons in Hermitian symmetric spaces”, J. Phys. A: Math. Gen., 39:15 (2006), 3921–3931 | DOI | MR | Zbl

[19] J. L. Cieśliński, J. Czarnecka, “The Darboux–Bäcklund transformation for the static $2$-dimensional continuum Heisenberg chain”, J. Phys. A: Math. Gen., 39:35 (2006), 11003–11012 | DOI | MR | Zbl

[20] O. Ragnisco, F. Zullo, “Continuous and discrete (classical) Heisenberg spin chain revisted”, SIGMA, 3 (2007), 033, 6 pp., arXiv: nlin.SI/0701006 | DOI | MR

[21] U. Saleem, M. Hassan, “Quasideterminant solutions of the generalized Heisenberg magnet model”, J. Phys. A: Math. Theor., 43:4 (2010), 045204, 12 pp. | DOI | MR | Zbl

[22] M. Lakshmanan, “Continuum spin system as an exactly solvable dynamical system”, Phys. Lett. A, 61:1 (1977), 53–54 | DOI

[23] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR

[24] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems. Theory and their Applications to Geometry, Mathematical Physics Studies, 26, Springer, Berlin, 2005 | DOI | MR

[25] B. Haider, M. Hassan, “Quasi-Grammian solutions of the generalized coupled dispersionless integrable system”, SIGMA, 8 (2012), 084, 15 pp., arXiv: 1211.1762 | DOI | MR | Zbl

[26] H. Wajahat A. Riaz, M. Hassan, “Darboux tramsformation of a semi-discrete coupled dispersionless integrable system”, Commun. Nonlinear Sci. Numer. Simul., 48 (2017), 387–397 | DOI | MR

[27] H. Wajahat A. Riaz, M. Hassan, “Multisoliton solutions of integrable discrete and semi-discrete principal chiral equations”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 416–427 | DOI | MR

[28] I. M. Gelfand, V. S. Retakh, “Determinanty matrits nad nekommutativnymi koltsami”, Funkts. analiz i ego pril., 25:2 (1991), 13–25 | DOI | MR | Zbl

[29] P. Etingof, I. Gelfand, V. Retakh, “Nonabelian integrable systems, quasideterminants, and Marchenko lemma”, Math. Res. Lett., 5:1–2 (1998), 1–12 | DOI | MR | Zbl

[30] I. Gelfand, S. Gelfand, V. Retakh, R. L. Wilson, “Quasideterminants”, Adv. Math., 193:1 (2005), 56–141 | DOI | MR | Zbl