Absence of global solutions of a mixed problem for a Schrödinger-type nonlinear evolution equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 190-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of the absence of global solutions of the first mixed problem for one nonlinear evolution equation of Schrödinger type. We prove that global solutions of the studied problem are absent for "sufficiently large" values of the initial data.
Mots-clés : evolution equation, global solution, absence of global solution.
Keywords: nonlinear evolution Schrödinger equation
@article{TMF_2018_195_2_a1,
     author = {Sh. M. Nasibov},
     title = {Absence of global solutions of a~mixed problem for {a~Schr\"odinger-type} nonlinear evolution equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {190--196},
     year = {2018},
     volume = {195},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a1/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - Absence of global solutions of a mixed problem for a Schrödinger-type nonlinear evolution equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 190
EP  - 196
VL  - 195
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a1/
LA  - ru
ID  - TMF_2018_195_2_a1
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T Absence of global solutions of a mixed problem for a Schrödinger-type nonlinear evolution equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 190-196
%V 195
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a1/
%G ru
%F TMF_2018_195_2_a1
Sh. M. Nasibov. Absence of global solutions of a mixed problem for a Schrödinger-type nonlinear evolution equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 190-196. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a1/

[1] K. Rypdal, J. J. Rasmussen, “Blow-up in nonlinear Schroedinger equations-I. A general review”, Phys. Scr., 33:6 (1986), 481–504 ; “Blow-up in nonlinear Schroedinger equations-II. Similarity structure of the blow-up singularity”, 498–504 | DOI | DOI | MR

[2] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[3] V. N. Lugovoi, A. M. Prokhorov, “Teoriya rasprostraneniya moschnogo lazernogo izlucheniya v nelineinoi srede”, UFN, 111:10 (1973), 203–247 | DOI | DOI

[4] Sh. M. Nasibov, “Ob ustoichivosti, razrushenii, zatukhanii i samokanalizatsii reshenii odnogo nelineinogo uravneniya Shredingera”, Dokl. AN SSSR, 285:4 (1985), 807–811 | Zbl

[5] Sh. M. Nasibov, “Ob odnom nelineinom uravnenii Shredingera s dissipativnym chlenom”, Dokl. AN SSSR, 304:2 (1989), 285–289 | MR | Zbl

[6] Sh. M. Nasibov, “Ob optimalnykh konstantakh v nekotorykh neravenstvakh Soboleva i ikh prilozhenii k nelineinomu uravneniyu Shredingera”, Dokl. AN SSSR, 307:3 (1990), 538–542 | MR

[7] A. B. Shabat, “O zadache Koshi dlya uravneniya Ginzburga–Landau”, Dinamika sploshnoi sredy, Vyp. 1, Izd-vo SO RAN, Novosibirsk, 1969, 180–194

[8] O. I. Kudryashov, “Ob osobennostyakh reshenii nelineinykh uravnenii tipa Ginzburga–Landau”, Sib. matem. zhurnal, 16:4 (1975), 866–868 | MR | Zbl

[9] M. Weinstein, “On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations”, Commun. Part. Differ. Equ., 11:5 (1986), 545–565 | DOI | MR | Zbl

[10] H. Nawa, “Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equations with critical power”, Commun. Pure Appl. Math., 52:2 (1999), 193–270 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[11] Sh. M. Nasibov, “O razrushenii reshenii smeshannoi zadachi dlya nelineinogo evolyutsionnogo uravneniya Ginzburga–Landau–Shredingera”, Differents. uravneniya, 39:8 (2003), 1087–1091 | MR | Zbl

[12] Sh. M. Nasibov, “On some sufficient conditions for the blow-up solutions of the nonlinear Ginzburg–Landau–Schrödinger evolution equation”, J. Appl. Math., 2004:1 (2004), 23–35 | DOI | MR | Zbl

[13] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, M., 1981 | MR

[14] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl., 110:1 (1976), 353–372 | DOI | MR | Zbl