Keywords: nonlinear evolution Schrödinger equation
@article{TMF_2018_195_2_a1,
author = {Sh. M. Nasibov},
title = {Absence of global solutions of a~mixed problem for {a~Schr\"odinger-type} nonlinear evolution equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {190--196},
year = {2018},
volume = {195},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a1/}
}
TY - JOUR AU - Sh. M. Nasibov TI - Absence of global solutions of a mixed problem for a Schrödinger-type nonlinear evolution equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 190 EP - 196 VL - 195 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a1/ LA - ru ID - TMF_2018_195_2_a1 ER -
Sh. M. Nasibov. Absence of global solutions of a mixed problem for a Schrödinger-type nonlinear evolution equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 190-196. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a1/
[1] K. Rypdal, J. J. Rasmussen, “Blow-up in nonlinear Schroedinger equations-I. A general review”, Phys. Scr., 33:6 (1986), 481–504 ; “Blow-up in nonlinear Schroedinger equations-II. Similarity structure of the blow-up singularity”, 498–504 | DOI | DOI | MR
[2] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR
[3] V. N. Lugovoi, A. M. Prokhorov, “Teoriya rasprostraneniya moschnogo lazernogo izlucheniya v nelineinoi srede”, UFN, 111:10 (1973), 203–247 | DOI | DOI
[4] Sh. M. Nasibov, “Ob ustoichivosti, razrushenii, zatukhanii i samokanalizatsii reshenii odnogo nelineinogo uravneniya Shredingera”, Dokl. AN SSSR, 285:4 (1985), 807–811 | Zbl
[5] Sh. M. Nasibov, “Ob odnom nelineinom uravnenii Shredingera s dissipativnym chlenom”, Dokl. AN SSSR, 304:2 (1989), 285–289 | MR | Zbl
[6] Sh. M. Nasibov, “Ob optimalnykh konstantakh v nekotorykh neravenstvakh Soboleva i ikh prilozhenii k nelineinomu uravneniyu Shredingera”, Dokl. AN SSSR, 307:3 (1990), 538–542 | MR
[7] A. B. Shabat, “O zadache Koshi dlya uravneniya Ginzburga–Landau”, Dinamika sploshnoi sredy, Vyp. 1, Izd-vo SO RAN, Novosibirsk, 1969, 180–194
[8] O. I. Kudryashov, “Ob osobennostyakh reshenii nelineinykh uravnenii tipa Ginzburga–Landau”, Sib. matem. zhurnal, 16:4 (1975), 866–868 | MR | Zbl
[9] M. Weinstein, “On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations”, Commun. Part. Differ. Equ., 11:5 (1986), 545–565 | DOI | MR | Zbl
[10] H. Nawa, “Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equations with critical power”, Commun. Pure Appl. Math., 52:2 (1999), 193–270 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[11] Sh. M. Nasibov, “O razrushenii reshenii smeshannoi zadachi dlya nelineinogo evolyutsionnogo uravneniya Ginzburga–Landau–Shredingera”, Differents. uravneniya, 39:8 (2003), 1087–1091 | MR | Zbl
[12] Sh. M. Nasibov, “On some sufficient conditions for the blow-up solutions of the nonlinear Ginzburg–Landau–Schrödinger evolution equation”, J. Appl. Math., 2004:1 (2004), 23–35 | DOI | MR | Zbl
[13] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, M., 1981 | MR
[14] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl., 110:1 (1976), 353–372 | DOI | MR | Zbl