Functional integrals for the~Bogoliubov Gaussian measure: Exact asymptotic forms
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 171-189
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove theorems on the exact asymptotic forms as $u\to\infty$ of two
functional integrals over the Bogoliubov measure $\mu_{{\mathrm B}}$ of the forms
$$
\int_{C[0,\beta]}\biggl[\,\int_0^\beta
|x(t)|^p\,dt\biggr]^{u}\,d\mu_{{\mathrm B}}(x),\qquad
\int_{C[0,\beta]}\exp\biggl\{u\biggl(\,\int_0^\beta
|x(t)|^p\,dt\biggr)^{\!\alpha/p}\,\biggr\}\,d\mu_{{\mathrm B}}(x)
$$
for $p=4,6,8,10$ with $p>p_0$, where $p_0=2+4\pi^2/\beta^2\omega^2$ is the threshold value, $\beta$ is the inverse temperature, $\omega$ is the eigenfrequency of the harmonic oscillator, and $0\alpha2$. As the method
of study, we use the Laplace method in Hilbert functional spaces for
distributions of almost surely continuous Gaussian processes.
Keywords:
Bogoliubov measure, almost surely continuous Gaussian process, Laplace method in a functional Hilbert space, manifold of minimum values.
@article{TMF_2018_195_2_a0,
author = {V. R. Fatalov},
title = {Functional integrals for {the~Bogoliubov} {Gaussian} measure: {Exact} asymptotic forms},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {171--189},
publisher = {mathdoc},
volume = {195},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a0/}
}
TY - JOUR AU - V. R. Fatalov TI - Functional integrals for the~Bogoliubov Gaussian measure: Exact asymptotic forms JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 171 EP - 189 VL - 195 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a0/ LA - ru ID - TMF_2018_195_2_a0 ER -
V. R. Fatalov. Functional integrals for the~Bogoliubov Gaussian measure: Exact asymptotic forms. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 171-189. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a0/