Functional integrals for the~Bogoliubov Gaussian measure: Exact asymptotic forms
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 171-189

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on the exact asymptotic forms as $u\to\infty$ of two functional integrals over the Bogoliubov measure $\mu_{{\mathrm B}}$ of the forms $$ \int_{C[0,\beta]}\biggl[\,\int_0^\beta |x(t)|^p\,dt\biggr]^{u}\,d\mu_{{\mathrm B}}(x),\qquad \int_{C[0,\beta]}\exp\biggl\{u\biggl(\,\int_0^\beta |x(t)|^p\,dt\biggr)^{\!\alpha/p}\,\biggr\}\,d\mu_{{\mathrm B}}(x) $$ for $p=4,6,8,10$ with $p>p_0$, where $p_0=2+4\pi^2/\beta^2\omega^2$ is the threshold value, $\beta$ is the inverse temperature, $\omega$ is the eigenfrequency of the harmonic oscillator, and $0\alpha2$. As the method of study, we use the Laplace method in Hilbert functional spaces for distributions of almost surely continuous Gaussian processes.
Keywords: Bogoliubov measure, almost surely continuous Gaussian process, Laplace method in a functional Hilbert space, manifold of minimum values.
@article{TMF_2018_195_2_a0,
     author = {V. R. Fatalov},
     title = {Functional integrals for {the~Bogoliubov} {Gaussian} measure: {Exact} asymptotic forms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {171--189},
     publisher = {mathdoc},
     volume = {195},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a0/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Functional integrals for the~Bogoliubov Gaussian measure: Exact asymptotic forms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 171
EP  - 189
VL  - 195
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a0/
LA  - ru
ID  - TMF_2018_195_2_a0
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Functional integrals for the~Bogoliubov Gaussian measure: Exact asymptotic forms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 171-189
%V 195
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a0/
%G ru
%F TMF_2018_195_2_a0
V. R. Fatalov. Functional integrals for the~Bogoliubov Gaussian measure: Exact asymptotic forms. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 171-189. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a0/