Functional integrals for the Bogoliubov Gaussian measure: Exact asymptotic forms
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 171-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove theorems on the exact asymptotic forms as $u\to\infty$ of two functional integrals over the Bogoliubov measure $\mu_{{\mathrm B}}$ of the forms $$ \int_{C[0,\beta]}\biggl[\,\int_0^\beta |x(t)|^p\,dt\biggr]^{u}\,d\mu_{{\mathrm B}}(x),\qquad \int_{C[0,\beta]}\exp\biggl\{u\biggl(\,\int_0^\beta |x(t)|^p\,dt\biggr)^{\!\alpha/p}\,\biggr\}\,d\mu_{{\mathrm B}}(x) $$ for $p=4,6,8,10$ with $p>p_0$, where $p_0=2+4\pi^2/\beta^2\omega^2$ is the threshold value, $\beta$ is the inverse temperature, $\omega$ is the eigenfrequency of the harmonic oscillator, and $0<\alpha<2$. As the method of study, we use the Laplace method in Hilbert functional spaces for distributions of almost surely continuous Gaussian processes.
Keywords: Bogoliubov measure, almost surely continuous Gaussian process, Laplace method in a functional Hilbert space, manifold of minimum values.
@article{TMF_2018_195_2_a0,
     author = {V. R. Fatalov},
     title = {Functional integrals for {the~Bogoliubov} {Gaussian} measure: {Exact} asymptotic forms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {171--189},
     year = {2018},
     volume = {195},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a0/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Functional integrals for the Bogoliubov Gaussian measure: Exact asymptotic forms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 171
EP  - 189
VL  - 195
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a0/
LA  - ru
ID  - TMF_2018_195_2_a0
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Functional integrals for the Bogoliubov Gaussian measure: Exact asymptotic forms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 171-189
%V 195
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a0/
%G ru
%F TMF_2018_195_2_a0
V. R. Fatalov. Functional integrals for the Bogoliubov Gaussian measure: Exact asymptotic forms. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 2, pp. 171-189. http://geodesic.mathdoc.fr/item/TMF_2018_195_2_a0/

[1] D. P. Sankovich, “O nekotorykh svoistvakh funktsionalnykh integralov po mere Bogolyubova”, TMF, 126:1 (2001), 149–163 | DOI | MR | Zbl

[2] V. R. Fatalov, “Tochnye asimptotiki tipa Laplasa dlya gaussovskoi mery Bogolyubova”, TMF, 168:2 (2011), 299–340 | DOI | DOI | MR

[3] V. R. Fatalov, “Tochnye asimptotiki tipa Laplasa dlya gaussovskoi mery Bogolyubova: mnogoobrazie tochek minimuma funktsionala deistviya”, TMF, 191:3 (2017), 456–472 | DOI | DOI | MR

[4] D. P. Sankovich, “Funktsionalnyi integral Bogolyubova”, Tr. MIAN, 251 (2005), 223–256 | MR | Zbl

[5] R. S. Pusev, “Asimptotika malykh uklonenii protsessov Bogolyubova v kvadratichnoi norme”, TMF, 165:1 (2010), 134–144 | DOI | DOI | Zbl

[6] V. R. Fatalov, “Gaussovskie protsessy Ornshteina–Ulenbeka i Bogolyubova: asimptotiki malykh uklonenii dlya $L^p$-funktsionalov, $0

\infty$”, Probl. peredachi inform., 50:4 (2014), 79–99 | DOI | Zbl

[7] V. R. Fatalov, “Ryady teorii vozmuschenii v kvantovoi mekhanike: fazovye perekhody i tochnye asimptotiki dlya koeffitsientov razlozheniya”, TMF, 174:3 (2013), 416–443 | DOI | DOI | MR | Zbl

[8] B. Simon, Functional Integration and Quantum Physics, Pure and Applied Mathematics, 86, Acad. Press, New York, 1979 | MR

[9] R. S. Ellis, J. S. Rosen, “Asymptotic analysis of Gaussian integrals. I. Isolated minimum points”, Trans. Amer. Math. Soc., 273:2 (1982), 447–481 | DOI | MR | Zbl

[10] R. S. Ellis, J. S. Rosen, “Asymptotic analysis of Gaussian integrals. II. Manifold of minimum points”, Commun. Math. Phys., 82:2 (1981), 153–181 | DOI | MR | Zbl

[11] V. I. Piterbarg, V. R. Fatalov, “Metod Laplasa dlya veroyatnostnykh mer v banakhovykh prostranstvakh”, UMN, 50:6(306) (1995), 57–150 | DOI | MR | Zbl

[12] Kh.-S. Go, Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979 | Zbl

[13] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR

[14] M. A. Lifshits, Gaussovskie sluchainye funktsii, Kiev, TViMS, 1995 | MR | Zbl

[15] V. I. Bogachev, Gaussovskie mery, Fizmatlit, M., 1997 | MR

[16] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 | MR

[17] A. S. Mischenko, A. T. Fomenko, Kurs differentsialnoi geometrii i topologii, Izd-vo Mosk. un-ta, M., 1980 | MR

[18] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR | MR

[19] A. Pich, Operatornye idealy, Mir, M., 1982 | MR