Representation of renormalization group functions by nonsingular
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 105-116
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the representation for renormalization group functions in terms of
nonsingular integrals, we calculate the dynamical critical exponents in the model of critical dynamics of ferromagnets in the fourth order of the $\varepsilon$-expansion. We calculate the Feynman diagrams using the sector
decomposition technique generalized to critical dynamics problems.
Keywords:
renormalization group, $\varepsilon$-expansion, multiloop diagram, critical parameter.
@article{TMF_2018_195_1_a9,
author = {L. Ts. Adzhemyan and S. E. Vorob'eva and E. V. Ivanova and M. V. Kompaniets},
title = {Representation of renormalization group functions by nonsingular},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {105--116},
publisher = {mathdoc},
volume = {195},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/}
}
TY - JOUR AU - L. Ts. Adzhemyan AU - S. E. Vorob'eva AU - E. V. Ivanova AU - M. V. Kompaniets TI - Representation of renormalization group functions by nonsingular JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 105 EP - 116 VL - 195 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/ LA - ru ID - TMF_2018_195_1_a9 ER -
%0 Journal Article %A L. Ts. Adzhemyan %A S. E. Vorob'eva %A E. V. Ivanova %A M. V. Kompaniets %T Representation of renormalization group functions by nonsingular %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 105-116 %V 195 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/ %G ru %F TMF_2018_195_1_a9
L. Ts. Adzhemyan; S. E. Vorob'eva; E. V. Ivanova; M. V. Kompaniets. Representation of renormalization group functions by nonsingular. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 105-116. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/