@article{TMF_2018_195_1_a9,
author = {L. Ts. Adzhemyan and S. E. Vorob'eva and E. V. Ivanova and M. V. Kompaniets},
title = {Representation of renormalization group functions by nonsingular},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {105--116},
year = {2018},
volume = {195},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/}
}
TY - JOUR AU - L. Ts. Adzhemyan AU - S. E. Vorob'eva AU - E. V. Ivanova AU - M. V. Kompaniets TI - Representation of renormalization group functions by nonsingular JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 105 EP - 116 VL - 195 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/ LA - ru ID - TMF_2018_195_1_a9 ER -
%0 Journal Article %A L. Ts. Adzhemyan %A S. E. Vorob'eva %A E. V. Ivanova %A M. V. Kompaniets %T Representation of renormalization group functions by nonsingular %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 105-116 %V 195 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/ %G ru %F TMF_2018_195_1_a9
L. Ts. Adzhemyan; S. E. Vorob'eva; E. V. Ivanova; M. V. Kompaniets. Representation of renormalization group functions by nonsingular. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 105-116. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/
[1] L. Ts. Adzhemyan, M. V. Kompaniets, “Renormgruppa i $\varepsilon$-razlozhenie: predstavlenie $\beta$-funktsii i anomalnykh razmernostei nesingulyarnymi integralami”, TMF, 169:1 (2011), 100–111 | DOI | DOI | MR
[2] L. Ts. Adzhemyan, M. V. Kompaniets, S. V. Novikov, V. K. Sazonov, “Predstavlenie $\beta$-funktsii i anomalnykh razmernostei nesingulyarnymi integralami: dokazatelstvo osnovnogo sootnosheniya”, TMF, 175:3 (2013), 325–336 | DOI | DOI | MR | Zbl
[3] L. Ts. Adzhemyan, S. E. Vorobeva, M. V. Kompaniets, “Predstavlenie nesingulyarnymi integralami $\beta$-funktsii i anomalnykh razmernostei v modelyakh kriticheskoi dinamiki”, TMF, 185:1 (2015), 3–11 | DOI | DOI | MR
[4] P. C. Hohenberg, B. I. Halperin, “Theory of dynamic critical phenomena”, Rev. Modern Phys., 49:3 (1977), 435–479 | DOI
[5] T. Binoth, G. Heinrich, “An automatized algorithm to compute infrared divergent multi-loop integrals”, Nucl. Phys. B, 585:3 (2000), 741–759 | DOI | MR | Zbl
[6] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF, SPb., 1998 | MR | Zbl
[7] O. I. Zavyalov, Perenormirovannye diagrammy Feinmana, Nauka, M., 1979 | MR
[8] L. Ts. Adzhemyan, Yu. V. Kirienko, M. V. Kompaniets, “Critical exponent $\eta$ in 2D $O(N)$-symmetric $\varphi^4$-model up to 6 loops”, arXiv: 1602.02324
[9] L. Ts. Adzhemyan, M. V. Kompaniets, “Five-loop numerical evaluation of critical exponents of the $\varphi^4$ theory”, J. Phys.: Conf. Ser., 523:1 (2014), 012049, 9 pp. | DOI
[10] B. I. Halperin, P. C. Hohenberg, S.-K. Ma, “Calculation of dynamic critical properties using Wilson's expansion methods”, Phys. Rev. Lett., 29:23 (1972), 1548–1551 | DOI
[11] N. V. Antonov, A. N. Vasilev, “Kriticheskaya dinamika kak teoriya polya”, TMF, 60:1 (1984), 59–71 | DOI
[12] L. Ts. Adzhemyan, S. V. Novikov, L. Sladkoff, “Raschet dinamicheskogo indeksa modeli $A$ kriticheskoi dinamiki v poryadke $\varepsilon^4$”, Vestn. S.-Peterburg. un-ta. Ser.\;4. Fizika, Khimiya, 2008, no. 4, 109–112
[13] E. R. Speer, “Mass singularities of generic Feynman amplitudes”, Ann. Inst. Henri Poincaré Sect. A (N. S.), 26:1 (1977), 87–105 | MR