Representation of renormalization group functions by nonsingular
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 105-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the representation for renormalization group functions in terms of nonsingular integrals, we calculate the dynamical critical exponents in the model of critical dynamics of ferromagnets in the fourth order of the $\varepsilon$-expansion. We calculate the Feynman diagrams using the sector decomposition technique generalized to critical dynamics problems.
Keywords: renormalization group, $\varepsilon$-expansion, multiloop diagram, critical parameter.
@article{TMF_2018_195_1_a9,
     author = {L. Ts. Adzhemyan and S. E. Vorob'eva and E. V. Ivanova and M. V. Kompaniets},
     title = {Representation of renormalization group functions by nonsingular},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {105--116},
     year = {2018},
     volume = {195},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/}
}
TY  - JOUR
AU  - L. Ts. Adzhemyan
AU  - S. E. Vorob'eva
AU  - E. V. Ivanova
AU  - M. V. Kompaniets
TI  - Representation of renormalization group functions by nonsingular
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 105
EP  - 116
VL  - 195
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/
LA  - ru
ID  - TMF_2018_195_1_a9
ER  - 
%0 Journal Article
%A L. Ts. Adzhemyan
%A S. E. Vorob'eva
%A E. V. Ivanova
%A M. V. Kompaniets
%T Representation of renormalization group functions by nonsingular
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 105-116
%V 195
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/
%G ru
%F TMF_2018_195_1_a9
L. Ts. Adzhemyan; S. E. Vorob'eva; E. V. Ivanova; M. V. Kompaniets. Representation of renormalization group functions by nonsingular. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 105-116. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a9/

[1] L. Ts. Adzhemyan, M. V. Kompaniets, “Renormgruppa i $\varepsilon$-razlozhenie: predstavlenie $\beta$-funktsii i anomalnykh razmernostei nesingulyarnymi integralami”, TMF, 169:1 (2011), 100–111 | DOI | DOI | MR

[2] L. Ts. Adzhemyan, M. V. Kompaniets, S. V. Novikov, V. K. Sazonov, “Predstavlenie $\beta$-funktsii i anomalnykh razmernostei nesingulyarnymi integralami: dokazatelstvo osnovnogo sootnosheniya”, TMF, 175:3 (2013), 325–336 | DOI | DOI | MR | Zbl

[3] L. Ts. Adzhemyan, S. E. Vorobeva, M. V. Kompaniets, “Predstavlenie nesingulyarnymi integralami $\beta$-funktsii i anomalnykh razmernostei v modelyakh kriticheskoi dinamiki”, TMF, 185:1 (2015), 3–11 | DOI | DOI | MR

[4] P. C. Hohenberg, B. I. Halperin, “Theory of dynamic critical phenomena”, Rev. Modern Phys., 49:3 (1977), 435–479 | DOI

[5] T. Binoth, G. Heinrich, “An automatized algorithm to compute infrared divergent multi-loop integrals”, Nucl. Phys. B, 585:3 (2000), 741–759 | DOI | MR | Zbl

[6] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF, SPb., 1998 | MR | Zbl

[7] O. I. Zavyalov, Perenormirovannye diagrammy Feinmana, Nauka, M., 1979 | MR

[8] L. Ts. Adzhemyan, Yu. V. Kirienko, M. V. Kompaniets, “Critical exponent $\eta$ in 2D $O(N)$-symmetric $\varphi^4$-model up to 6 loops”, arXiv: 1602.02324

[9] L. Ts. Adzhemyan, M. V. Kompaniets, “Five-loop numerical evaluation of critical exponents of the $\varphi^4$ theory”, J. Phys.: Conf. Ser., 523:1 (2014), 012049, 9 pp. | DOI

[10] B. I. Halperin, P. C. Hohenberg, S.-K. Ma, “Calculation of dynamic critical properties using Wilson's expansion methods”, Phys. Rev. Lett., 29:23 (1972), 1548–1551 | DOI

[11] N. V. Antonov, A. N. Vasilev, “Kriticheskaya dinamika kak teoriya polya”, TMF, 60:1 (1984), 59–71 | DOI

[12] L. Ts. Adzhemyan, S. V. Novikov, L. Sladkoff, “Raschet dinamicheskogo indeksa modeli $A$ kriticheskoi dinamiki v poryadke $\varepsilon^4$”, Vestn. S.-Peterburg. un-ta. Ser.\;4. Fizika, Khimiya, 2008, no. 4, 109–112

[13] E. R. Speer, “Mass singularities of generic Feynman amplitudes”, Ann. Inst. Henri Poincaré Sect. A (N. S.), 26:1 (1977), 87–105 | MR