Fractional Hamiltonian systems with locally defined potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 81-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study solutions of the nonperiodic fractional Hamiltonian systems $$ -{}_tD^{\alpha}_{\infty}({}_{-\infty} D_{t}^{\alpha}x(t))-L(t)x(t)+ \nabla W(t,x(t))=0,\quad x\in H^\alpha(\mathbb{R},\mathbb{R}^N), $$ where $\alpha\in(1/2,1]$, $t\in\mathbb R$, $L(t)\in C(\mathbb R,\mathbb R^{N^2})$, and ${}_{-\infty}D^{\alpha}_{t}$ and ${}_tD^{\alpha}_{\infty}$ are the respective left and right Liouville–Weyl fractional derivatives of order $\alpha$ on the whole axis $\mathbb R$. Using a new symmetric mountain pass theorem established by Kajikia, we prove the existence of infinitely many solutions for this system in the case where the matrix $L(t)$ is not necessarily coercive nor uniformly positive definite and $W(t,x)$ is defined only locally near the coordinate origin $x=0$. The proved theorems significantly generalize and improve previously obtained results. We also give several illustrative examples.
Keywords: fractional Hamiltonian system, critical point theory, symmetric mountain pass theorem.
@article{TMF_2018_195_1_a7,
     author = {A. B. Benhassine},
     title = {Fractional {Hamiltonian} systems with locally defined potentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {81--90},
     year = {2018},
     volume = {195},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a7/}
}
TY  - JOUR
AU  - A. B. Benhassine
TI  - Fractional Hamiltonian systems with locally defined potentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 81
EP  - 90
VL  - 195
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a7/
LA  - ru
ID  - TMF_2018_195_1_a7
ER  - 
%0 Journal Article
%A A. B. Benhassine
%T Fractional Hamiltonian systems with locally defined potentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 81-90
%V 195
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a7/
%G ru
%F TMF_2018_195_1_a7
A. B. Benhassine. Fractional Hamiltonian systems with locally defined potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 81-90. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a7/

[1] A. Ambrosetti, P. H. Rabinowitz, “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14:4 (1973), 349–381 | DOI | MR | Zbl

[2] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, AMS, Providence, RI, 1986 | DOI | MR

[3] A. Ambrosetti, V. C. Zelati, “Multiple homoclinic orbits for a class of conservative systems”, Rend. Semin. Mat. Univ. Padova, 89 (1993), 177–194 | MR | Zbl

[4] Y. H. Ding, “Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems”, Nonlinear Anal.: Theor. Methods Appl., 25:11 (1995), 1095–1113 | DOI | MR | Zbl

[5] W. Omana, M. Willem, “Homoclinic orbits for a class of Hamiltonian systems”, Differ. Integral Equ., 5:5 (1992), 1115–1120 | MR | Zbl

[6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[7] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus And Fractional Differential Equations, Wiley and Sons, New York, 1993 | MR

[8] F. Jiao, Y. Zhou, “Existence results for fractional boundary value problem via critical point theory”, Internat. J. Bifurcation Chaos, 22:4 (2012), 1250086, 17 pp. | DOI | MR | Zbl

[9] C. Torres, “Existence of solution for fractional Hamiltonian systems”, Electron. J. Differ. Equ., 2013:259 (2013), 1–12

[10] R. Kajikiya, “A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations”, J. Funct. Anal., 225:2 (2005), 352–370 | DOI | MR | Zbl