@article{TMF_2018_195_1_a7,
author = {A. B. Benhassine},
title = {Fractional {Hamiltonian} systems with locally defined potentials},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {81--90},
year = {2018},
volume = {195},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a7/}
}
A. B. Benhassine. Fractional Hamiltonian systems with locally defined potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 81-90. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a7/
[1] A. Ambrosetti, P. H. Rabinowitz, “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14:4 (1973), 349–381 | DOI | MR | Zbl
[2] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, AMS, Providence, RI, 1986 | DOI | MR
[3] A. Ambrosetti, V. C. Zelati, “Multiple homoclinic orbits for a class of conservative systems”, Rend. Semin. Mat. Univ. Padova, 89 (1993), 177–194 | MR | Zbl
[4] Y. H. Ding, “Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems”, Nonlinear Anal.: Theor. Methods Appl., 25:11 (1995), 1095–1113 | DOI | MR | Zbl
[5] W. Omana, M. Willem, “Homoclinic orbits for a class of Hamiltonian systems”, Differ. Integral Equ., 5:5 (1992), 1115–1120 | MR | Zbl
[6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR | Zbl
[7] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus And Fractional Differential Equations, Wiley and Sons, New York, 1993 | MR
[8] F. Jiao, Y. Zhou, “Existence results for fractional boundary value problem via critical point theory”, Internat. J. Bifurcation Chaos, 22:4 (2012), 1250086, 17 pp. | DOI | MR | Zbl
[9] C. Torres, “Existence of solution for fractional Hamiltonian systems”, Electron. J. Differ. Equ., 2013:259 (2013), 1–12
[10] R. Kajikiya, “A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations”, J. Funct. Anal., 225:2 (2005), 352–370 | DOI | MR | Zbl