Differences of idempotents in $C^*$-algebras and the~quantum Hall effect
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 75-80

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varphi$ be a trace on the unital $C^*$-algebra $\mathcal{A}$ and $\mathfrak{M}_{\varphi}$ be the ideal of the definition of the trace $\varphi$. We obtain a $C^*$ analogue of the quantum Hall effect: if $P,Q\in\mathcal{A}$ are idempotents and $P-Q\in\mathfrak{M}_{\varphi}$, then $\varphi((P-Q)^{2n+1})=\varphi (P-Q)\in \mathbb{R}$ for all $n\in\mathbb{N}$. Let the isometries $U\in\mathcal{A}$ and $A=A^*\in\mathcal{A}$ be such that $I+A$ is invertible and $U-A\in\mathfrak{M}_{\varphi}$ with $\varphi (U-A)\in \mathbb{R}$. Then $I-A,\,I-U \in\mathfrak{M}_{\varphi}$ and $\varphi (I-U)\in \mathbb{R}$. Let $n\in\mathbb{N}$, $\dim \mathcal{H}=2n+1$, the symmetry operators $U,V\in\mathcal{B}(\mathcal{H})$, and $W=U-V$. Then the operator $W$ is not a symmetry, and if $V=V^*$, then the operator $W$ is nonunitary.
Keywords: Hilbert space, linear operator, idempotent, symmetry, projection, unitary operator, trace-class operator, $C^*$-algebra, trace, quantum Hall effect.
@article{TMF_2018_195_1_a6,
     author = {A. M. Bikchentaev},
     title = {Differences of idempotents in $C^*$-algebras and the~quantum {Hall} effect},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {75--80},
     publisher = {mathdoc},
     volume = {195},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a6/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Differences of idempotents in $C^*$-algebras and the~quantum Hall effect
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 75
EP  - 80
VL  - 195
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a6/
LA  - ru
ID  - TMF_2018_195_1_a6
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Differences of idempotents in $C^*$-algebras and the~quantum Hall effect
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 75-80
%V 195
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a6/
%G ru
%F TMF_2018_195_1_a6
A. M. Bikchentaev. Differences of idempotents in $C^*$-algebras and the~quantum Hall effect. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 75-80. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a6/