Differences of idempotents in $C^*$-algebras and the~quantum Hall effect
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 75-80
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\varphi$ be a trace on the unital $C^*$-algebra $\mathcal{A}$ and $\mathfrak{M}_{\varphi}$ be
the ideal of the definition of the trace $\varphi$. We obtain a $C^*$ analogue
of the quantum Hall effect: if $P,Q\in\mathcal{A}$ are idempotents and
$P-Q\in\mathfrak{M}_{\varphi}$, then $\varphi((P-Q)^{2n+1})=\varphi (P-Q)\in \mathbb{R}$ for all
$n\in\mathbb{N}$. Let the isometries $U\in\mathcal{A}$ and $A=A^*\in\mathcal{A}$ be such that $I+A$
is invertible and $U-A\in\mathfrak{M}_{\varphi}$ with $\varphi (U-A)\in \mathbb{R}$. Then $I-A,\,I-U
\in\mathfrak{M}_{\varphi}$ and $\varphi (I-U)\in \mathbb{R}$. Let $n\in\mathbb{N}$, $\dim \mathcal{H}=2n+1$, the symmetry operators $U,V\in\mathcal{B}(\mathcal{H})$, and $W=U-V$. Then the operator
$W$ is not a symmetry, and if $V=V^*$, then the operator $W$ is nonunitary.
Keywords:
Hilbert space, linear operator, idempotent, symmetry, projection, unitary operator, trace-class operator, $C^*$-algebra, trace, quantum Hall effect.
@article{TMF_2018_195_1_a6,
author = {A. M. Bikchentaev},
title = {Differences of idempotents in $C^*$-algebras and the~quantum {Hall} effect},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {75--80},
publisher = {mathdoc},
volume = {195},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a6/}
}
TY - JOUR AU - A. M. Bikchentaev TI - Differences of idempotents in $C^*$-algebras and the~quantum Hall effect JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 75 EP - 80 VL - 195 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a6/ LA - ru ID - TMF_2018_195_1_a6 ER -
A. M. Bikchentaev. Differences of idempotents in $C^*$-algebras and the~quantum Hall effect. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 75-80. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a6/