Differences of idempotents in $C^*$-algebras and the quantum Hall effect
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 75-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\varphi$ be a trace on the unital $C^*$-algebra $\mathcal{A}$ and $\mathfrak{M}_{\varphi}$ be the ideal of the definition of the trace $\varphi$. We obtain a $C^*$ analogue of the quantum Hall effect: if $P,Q\in\mathcal{A}$ are idempotents and $P-Q\in\mathfrak{M}_{\varphi}$, then $\varphi((P-Q)^{2n+1})=\varphi (P-Q)\in \mathbb{R}$ for all $n\in\mathbb{N}$. Let the isometries $U\in\mathcal{A}$ and $A=A^*\in\mathcal{A}$ be such that $I+A$ is invertible and $U-A\in\mathfrak{M}_{\varphi}$ with $\varphi (U-A)\in \mathbb{R}$. Then $I-A,\,I-U \in\mathfrak{M}_{\varphi}$ and $\varphi (I-U)\in \mathbb{R}$. Let $n\in\mathbb{N}$, $\dim \mathcal{H}=2n+1$, the symmetry operators $U,V\in\mathcal{B}(\mathcal{H})$, and $W=U-V$. Then the operator $W$ is not a symmetry, and if $V=V^*$, then the operator $W$ is nonunitary.
Keywords: Hilbert space, linear operator, idempotent, symmetry, projection, unitary operator, trace-class operator, $C^*$-algebra, trace, quantum Hall effect.
@article{TMF_2018_195_1_a6,
     author = {A. M. Bikchentaev},
     title = {Differences of idempotents in $C^*$-algebras and the~quantum {Hall} effect},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {75--80},
     year = {2018},
     volume = {195},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a6/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Differences of idempotents in $C^*$-algebras and the quantum Hall effect
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 75
EP  - 80
VL  - 195
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a6/
LA  - ru
ID  - TMF_2018_195_1_a6
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Differences of idempotents in $C^*$-algebras and the quantum Hall effect
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 75-80
%V 195
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a6/
%G ru
%F TMF_2018_195_1_a6
A. M. Bikchentaev. Differences of idempotents in $C^*$-algebras and the quantum Hall effect. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 75-80. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a6/

[1] J. J. Koliha, V. Rakočević, “Invertibility of the difference of idempotents”, Linear Multilinear Algebra, 51:1 (2003), 97–110 | DOI | MR

[2] J. J. Koliha, V. Rakočević, I. Straškraba, “The difference and sum of projectors”, Linear Algebra Appl., 388 (2004), 279–288 | DOI | MR | Zbl

[3] J. J. Koliha, V. Rakočević, “Fredholm properties of the difference of orthogonal projections in a Hilbert space”, Integr. Equ. Oper. Theory, 52:1 (2005), 125–134 | DOI | MR | Zbl

[4] A. M. Bikchentaev, “Ob idempotentnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k algebre fon Neimana”, Matem. zametki, 100:4 (2016), 492–503 | DOI | DOI | MR

[5] J. Avron, R. Seiler, B. Simon, “The index of a pair of projections”, J. Funct. Anal., 120:1 (1994), 220–237 | DOI | MR | Zbl

[6] N. J. Kalton, “A note on pairs of projections”, Bol. Soc. Mat. Mexicana (3), 3:2 (1997), 309–311 | MR | Zbl

[7] A. M. Bikchentaev, R. S. Yakushev, “Representation of tripotents and representations via tripotents”, Linear Algebra Appl., 435:9 (2011), 2156–2165 | DOI | MR | Zbl

[8] A. M. Bikchentaev, “Tripotents in algebras: invertibility and hyponormality”, Lobachevskii J. Math., 35:3 (2014), 281–285 | DOI | MR | Zbl

[9] J. Bellissard, A. van Elst, H. Schulz-Baldes, “The noncommutative geometry of the quantum Hall effect”, J. Math. Phys., 35:10 (1994), 5373–5451 | DOI | MR | Zbl

[10] F. Gesztesy, “From mathematical physics to analysis: a walk in Barry Simon's mathematical garden. II”, Notices Amer. Math. Soc., 63:8 (2016), 878–889 | DOI | Zbl

[11] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl

[12] A. M. Bikchentaev, “Raznosti idempotentov v $C^*$-algebrakh”, Sib. matem. zhurn., 58:2 (2017), 243–250 | DOI | DOI | Zbl

[13] A. M. Bikchentaev, “Ob odnom svoistve $L_p$-prostranstv na polukonechnykh algebrakh fon Neimana”, Matem. zametki, 64:2 (1998), 185–190 | DOI | DOI | MR | Zbl

[14] A. M. Bikchentaev, “Perestanovochnost proektorov i kharakterizatsiya sleda na algebrakh fon Neimana”, Sib. matem. zhurn., 51:6 (2010), 1228–1236 | DOI | MR

[15] A. M. Bikchentaev, “Perestanovochnost proektorov i kharakterizatsiya sleda na algebrakh fon Neimana. II”, Matem. zametki, 89:4 (2011), 483–494 | DOI | DOI | MR

[16] A. M. Bikchentaev, “Commutation of projections and characterization of traces on von Neumann algebras. III”, Internat. J. Theor. Phys., 54:12 (2015), 4482–4493 | DOI | MR | Zbl