Solvability of a~nonlinear integral equation in dynamical string
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 44-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate an integral equation of the convolution type with a cubic nonlinearity on the entire real line. This equation has a direct application in open-string field theory and in $p$-adic string theory and describes nonlocal interactions. We prove that there exists a one-parameter family of bounded monotonic solutions and calculate the limits of solutions constructed at infinity.
Keywords:
bounded solution, iteration, monotonicity.
Mots-clés : nonlocal interaction, limit solution
Mots-clés : nonlocal interaction, limit solution
@article{TMF_2018_195_1_a3,
author = {A. Kh. Khachatryan and Kh. A. Khachatryan},
title = {Solvability of a~nonlinear integral equation in dynamical string},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {44--53},
publisher = {mathdoc},
volume = {195},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a3/}
}
TY - JOUR AU - A. Kh. Khachatryan AU - Kh. A. Khachatryan TI - Solvability of a~nonlinear integral equation in dynamical string JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 44 EP - 53 VL - 195 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a3/ LA - ru ID - TMF_2018_195_1_a3 ER -
A. Kh. Khachatryan; Kh. A. Khachatryan. Solvability of a~nonlinear integral equation in dynamical string. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 44-53. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a3/